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1. Introduction

Consider the initial value problems of ordinary differential equations
{y’(f) =f), 120,
»(0) =y, € R,

where the vector function f@ RY — R satisfies the one-sided Lipschitz
condition

p—zf0)—f@) <uly -z W,zeR, (1.2)

(,+) is the standard inner product in R" with the corresponding norm ||-,-|.
This class of the problems (1.1) and (1.2) will be denoted by F),. It is well known
that two solutions y(¢),z(¢) of the problem class F, with u < 0 are contractive,
ie.

(1.1)

ly(e +h) =zt + B < e[ly(e) — (]| < [ly(e) =z Ve,h = 0. (1.3)

We require that the numerical methods for F, (u < 0) can reproduce the
contractive property (1.3). Thus, some nonlinear stability concepts (such as
B-stability, cf. [1-4], (1,0,0)-stability, cf. [1,4-6], etc.) have been introduced,
and the corresponding algebraic criteria (i.e. algebraic stability) were estab-
lished (cf. [3,4,6-8]). But algebraic stability is a strong requirement and is
not shared by many other methods (such as the trapezoidal rule, more gener-
ally, Lobatto IITA methods, cf. [3,4,9]) which can be easily implemented. For
such methods, it is of interest to look for some simpler properties that still give
some insight into the long-time behaviors of numerical methods when applied
to the problem class F. One such property is the equilibrium attractive pro-
perty that y(¢) := |[f(y(t))H2 (t = 0) is a non-increasing function for any
solution y(¢). Schmitt and Weiner [10] proved that the problem class Fj is equi-
librium attractive if f'is Holder continuous with exponent o € (3, 1]:

1/ () = f@)I < Lllu —v]|* Vu,v € R

and discussed the multipoint condition

Y (ri)u— v, f(w) = () <O Vui,u € R, (1.4)

0<i<k<s

where R = (rx);,_, is symmetric and nonnegative definite, el , = (I,
1,...,1) € R, Res; =0. Some authors recently discussed the equilibrium
attractive property of linearly implicit ROW-methods and W-methods (cf.
[11]), stiffly accurate Runge-Kutta methods (RKMs) (cf. [10]). The other re-
lated results can be founded in [12,13, etc.].

Consider the stiffly accurate multistep Runge-Kutta methods (MRKMs)
(cf. [4,6,14]) for problems (1.1) and (1.2)
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Y,-:hZa,-jf(Yj)—f—Zotjyn,lH, i:O,l,...,s, (153)
j=0 j=1
urr =D b (V) 40w, 1, (1.5b)
j=0 =1

where /> 0 is the given step-size, a;;, o, b; (1,j =0,1,...,5; k=1,2,...,r) are
real constants, Z;:Ia(,- =1, a;=>5;, a; =0, j=0,1,...,s. The vector Y; is
an approximation y(t, + ¢;h) for i=0,1,...,s. Here, t,=nh, ¢; (i=0,1,...,5)

are real constants and ¢y =0, ¢, =7, ¢; # ¢; (i # j). Let
A= (al»j)ij:o, OCT = (O(],Otz, .. .,OC,), bT = (b(),b], Ce ,bs),
c' = (co,c1y...,¢), C=diag(c), e = (1, 17...,1)T eER

and & (i=1,2,...,s+ 1) are the unit vectors in R**'. From (1.5), we have
Yy = Z‘xjyn—lﬂ'v Yo =Yu
=1

In the following sections, the square matrix W = 0( > 0) denotes W is nonneg-
ative definite (positive definite).
Let us introduce the following simplifying conditions (cf. [1,4,6,14,15])

B(p): o'y =+ kb =0, k=1,2,....1,
Clp): Ayf =+ kA =0, k=1,2,...,1,

where y = (0,1,...,r — l)T, A= (o,a,..., oc)T, and multiplication of vectors is
done componentwise.

In this paper, we discuss some equilibrium attractive properties of the meth-
od (1.5) for the problem class F. Some algebraic conditions insuring the equi-
librium attractivity are given, and some methods satisfying these given
algebraic conditions are constructed. Some numerical examples confirm our
results.

2. Main results and proofs
The stage equation (1.5a) leads to the relation
Yi—Ye=hY (ay—ay)f(Y)), i#k 0<i, k<s. (2.1)
=0

Let
Li=1), T'=(p)_=RA + AR+ e8] — &8l
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where R are given in (1.4), ¢; is the i-th unit vector in RSV i=12,...,8+1.
We can get the following equality:
° 2 2
S )= Yefi = i) = S £ + A = 1l (22)
0<ik<s i,j=0

by a similar process to the proof process of Theorem 2.1 in [10].

Theorem 2.1. If there exists a symmetric nonnegative-definite matrix
R = (ry); =0 such that Regy = 0, I' = 0 and the multipoint condition (1.4) holds,

then any solutlon of (1.5) satisfies
(Z yn 1+j> H

Proof. The conclusion follows from the assumed conditions and (2.2). O

IF < Ml e If )l <

Theorem 2.1 is an extension of Theorem 2.1 in [10].

Remark 2.1. If the method (1.5) is of B-convergence order p > 2, the vector
function f and the solution y(¢) of the problem class Fj satisfies the smooth
requirement needed in the following text, then

yn—l+j:y(tﬂfl+j')+0(hp)7 ]: 1,2,...,1"+1.

It follows from a'e, = 1 that:

I

Yo = y(ta14r) + (Z 06,( )) hy' (ta14r) + O(hz)

=1
When B(1) holds and b'e,,; = 1, we have Z;zlacj(j —-r=1- b'e,.; = 0. Thus
YO :yn—l+r+o(h2)? f(YO) :f(yn71+r) +O(h2)
Therefore, Theorem 2.1 yields
1f G| S WX < N Gori) Il +OF) < -+ < NIf 20) | + O(h).
If the initial values y,_y,...,y1, o satisfy
SO < Nf i)l +O(h), i=12,....r—1,
then
If @) | < 1f o)l + O(h).

When f(yo) =0, ||[f(yn+,)|| = O(h) and y,,, — ¥, for h — 0, here, f(y,) =0 (cf.
[16]).
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On the one hand, if f() =0, y,=p({=0,1,...,,—1), then
yv,=¥n=0),Y,=p(i=0,1,...,s) is the solution of (1.5). On the other
hand, if y is an equilibrium solution of (1.5), i.e., y, =9 (n = 0) and

Y,:hZa”f(Yj)—l—j/, l.:O717...,S7 (233.)
J=0
0=> b/ (Y)), (2.3b)
j=0

then we naturally ask whether f(7) = 0? This is one of regularity problems of
MRKMs, and some results can be found in [17,18]. For (2.3), we have f(¥) =0
if ijobj #0and ¥, =75 (i=0,1,...,s).

Theorem 2.2. Assume that there exists a symmetric nonnegative-definite matrix
R = (r[j)f,j:() such that Regy = 0, and the method (1.5) possesses an equilibrium
solution.

(1) If the multipoint condition (1.4) holds, then I' < 0.
(2) If the equality of the multipoint condition (1.4) holds, then I' = 0.

Proof. Let y is an equilibrium solution of (1.5). We have y, = y(n > 0),
Yy = Y, = 3. Thus, the conclusions follows from (2.2) and (2.3). O

Now we give some properties of the simplifying conditions of the method (1.5).

Theorem 2.3. For the nondegenerate method (1.5), C(r — 1) cannot hold.

Proof. If C(r — 1) holds, then
Ay —F + kA =0, k=1,2,...,r—1. (2.4)

Because ¢p=0 and a,;=0(j=0,1,...,5), (2.4) yields a'*=0 (k=1,2,...,
r—1). Moreover, o; = 1,00 =---=0a.=0. This shows that the method is
degenerate. [

In the following sections, we assume that C(r — 2) holds. At this time,
aty =0 (k=12...r—2),1ie.

Vio(tay .o ytpy) = —a(r = D)(Lr—1,...,(r = 1)), (2.5)

Q=2 .. . .
where V,_, = (Jl);,-:1 is invertible. From (2.5), we can obtain o; = o; (o),
i=2,...,r—1, here, o, is a parameter. Moreover, a; = 1 — | 0.
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Remark 3.2. The method (1.5) with b; # 0 (i = 0,s) cannot be algebraically
stable (for the nonzero real symmetric matrix G = (gli]-);j:1 > 0 and the
nonzero real diagonal matrix D = diag(dy,d,...,d;) = 0). In fact, from the
definition of the algebraic stability (cf. [1,4,6,15]), we require that the matrix

My My,
M= =0,
My My
where

My = A™D + DA — C},GCy,

0 0 --- 0
N IR [P
21 0O 0 -.- 0

by b1 - b

and

(Mzz)l-j =—g,bibj+da; +d;a;, i,j=0,1,...,s.
The formula M;, = 0 yields

(M2)y = *grrb(z) > 0.
Thus, from b; # 0(i = 0,s), we have

g,=0, da;+da; =0, i,j=0,1,2,...,s.

Moreover, d, = 0. It follows from a result given in [8], a necessary condition for
algebraic stability is

Deyy = C,,Ge, or d;=xb;, i=0,1,....s,
where k = Z;:lg,.j. Thus, from d; = 0 and by # 0, we have k =0 and D = 0.

3. r-Step RKMs with s = 1

When s =1, we have a;;=b; (j =0,1), ¢co =0 and ¢; = r. Thus, the method
(1.5) becomes

Yo=Y @y, 11y Yuer = Y1 =h(bof(Yo) +bif (Y1) + Yo (3.1)

Jj=1

From Re, =0, RT = R > 0, we have

( 1 —1) ( 1 — 2apby ao(bo—bl)>
R = Aa B I= )
-1 1 ao(bo — b]) 2(101)1 -1
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where ag = rogp > 0. And the multipoint condition (1.4) holds. In fact,

D (=Y = Yi £(Y0) = f(Ye)) = ao(Yo = Y1,/ (Yo) = /(Y1) <O,

0<i<k<1

It is easy to show that I' > 0 if and only if

2a0b0 < 1, ZaOb] = 17 a()(b() + b]) =1. (32&)
Taking ay = 1 leads to the conclusion that
1 1
F?O@bogz, b1>§, b0+b1:1 (32b)

Corollary 3.1. For 0 > %, the 0-scheme
yn+l :yn+h((1_g)f(y)z)+0f(yn+l)) (33)

is equilibrium attractive, i.e.

1/ @Dl < I

Proof. Eq. (3.3) can be written as the form of (3.1) withr=1,¢y=0,¢; =1 and

b0:1—0, b1:0, 061:1, Y():yn, Y]Zyn+1.
The conclusion follows from (3.2) and Theorem 2.1. O

Corollary 3.1 has been obtained in [10].
Let B(r — 1) hold. We have
y=r—(bo+b), oy =r'r—ib), i=23,...,r—1 (3.4)
Moreover, (3.4) yields
V(o) = (r = (b + by),r(r = 2b1), ..., 7 2(r = (r — 1)by))",
(3.5)

Iz

where V, | = (j"),.ﬁj_.:l1 is invertible.
When r =2, (3.2a), (3.5) and the equality o; + o, = 1 yield

1 1
=2—(by+b))=2——, o=by+b—1=——1,
ao ap

where ag >0 is a free parameter. Moreover, if ay = 1, then (3.1) degenerates
into a one-step RKM.
When r = 3, (3.5) yields

()G -Ciaa’) a0
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And (2.5) (i.e. C(r — 2) holds) yields

oy = —20;3. (3.7)
From (3.2a), (3.6) and (3.7), we have

062:—9+6b1, b0:3—b1, u3:§—3b1,

11 1
4] :7— 3b1, ag = § (38)

Thus, we get a family of equilibrium attractive 3-step RKMs with s = 1 and the
free parameter b, > 3/2. For examples, (3.8) yields by taking b; =

= (—1/2,3,-3/2), b"=(1,2), ay=1/3. (3.9)
(3.9) satisfies (3.2a), B(2) and C(1).
Applying (3.1) to the model equation
Y (@) =24y, Rel<O0
leads to the equality

Yotr — E %Yn—14j = a

where

1 + hby

1 — hb,

By means of the Schur criteria, we easily prove that the method (3.1) with r =2
is A-stable if

0<O!1,0(2<1, b1>b0,bo+b1>0.

h = h;‘7 q)(il) =

For examples, we can take

==, b=1, by==. 3.10
27 1 ) 0 ( )

(3.10) satisfies (3.2a) and B(1).

4. r-Step RKMs with s =2

When s =2, we have ¢ = (0,c1,r)T with ¢; # 0,r. Thus, the method (1.5)
becomes
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r 2
YO:ZOijnflJrj? Yl :hzaljf(yj)+Y0a
j=1 Jj=0

2
Yurr = Y2 =hY_bif(¥;) + Yo (4.1)
Jj=0
For r =2, if B(3) holds, then we have
20— 2) o1
bl—m, bz—l—zaz—zblch (423)
bo =2 Oy — b] — bz, o = 1-— 0, (42b)

where o, and ¢; are free parameters.
For r =3, if B(3) and C(1) hold, then we have

9 — 204 3 1 1
bl 2C1 (3 — Cl) s bz 3 3 o3 3 b]Cl7 b() 3 bl bz, ( 33.)

oy = 203, ap=c— (ag+ap), o=1+a. (4.3b)
For R with s =2, we have

Yoo =71 +rn +2rn,  ror = —ri —ru, o = —rn— o
It is easy to prove that R > 0 if and only if

=0, rn =0, rurm =1, rntrn = =2 (4.4)
We easily show that (1.4) holds if

rii = —rp, Ipn 2 —rp, <0

Let 7y > 0, 7 > 0, #1172 > 7, For the method (4.1), it follows from I" = 0
that

712021 12722 22021
a = — , A= — Sy ) (4.5a)
T 2(rrn — ”12) 1
_ _ 1 —2rpap _Foan + roan + ridsp 4.5b
bz—azz—iz y a0 = — > (5)
22 ri
by — _rpFoan + roFida — rutoidi — 'ifopdz 4
0= dy = > ) (4.5¢)
ryurxn — 1y
rlz(rzz — 1) = 0, (45d)

where a»; = by. (4.5) shows that 4 can be determined by R with r;, =0 or
rop = 1.
When rj;, =0, (4.5) yields

1
(111—0, bz—(ln—FZZ, ap = — P s (463)
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roo =¥ +ran, Foo=—ru, re= —TIn. (4.6b)
rnds)
ap = , by=ay=7——ay, (4.6¢)
r 2ry

where ry,,ry; are free parameters. And (1.4) becomes
(Yo = Y1, f(Yo) = f(Y1)) + (Yo = Ya, f(Yo) — f(Y2)) <O. (4.7)

(4.7) holds for r1; >0, ry, > 0.
For r =2 and r, =0, (4.6) and (4.2) lead to

1 2(67’22 - 5) 1
=2-— =2 - 4.8
% 2 I"227 “ 3(2}"22—1)7 r22§£2; ( a)
2rp — 1
o = 1— 0, dy = b] = L, C| 7é 0. (48b)
21”2201

Therefore, the method (4.1) and the matrix R can be given by (4.6) and (4.8)
with the free parameters r;; >0 and r, > 0. Moreover, if ry, =1, then the
method (4.1) is degenerate. By taking r1; = 1 and r,, = 7/8, (4.6) and (4.8) yield

0 0 0
c1=2/9, o' =(1/7,6/7), A=| 27/16 0 27/16 |. (4.9)
—19/14 27/14 4/7
For r =3 and ry, = 0, it is easy to show that (4.6) and (4.3) lead to ¢; = 0. Thus,
the method (4.1) satisfying B(3) and C(1) cannot satisfy I' = 0 for R > 0 with

r2=0,71>0,r3>0.
When r», =1, (1.4) holds if

ru = —rp, —1<rp <0. (4.10)
For r=2 and ry, = 1, (4.2) and (4.5) yield

ri = 2r7
Oy = ;111 —I’%l;? o = 1 — 0,
3 24,2 2
Z(rll—Zrlz)cl—l—(3;’12—7)01—1—2712:0

and b, a; (i=1,2; j=0,1,2) can be given by (4.2) and (4.5) with the free
parameters r; > 0 and ry, satisfying (4.4) and (4.10).
For r =3 and r», = 1, (4.3) and (4.5) yield

- ——}"2 cr — 5—61"12
11 = P 120 | 7’12(31"12 +2)7

-9 2 9-2
o = (raer +2) a1 = by o

2()"126’1(2+Cl)—2), :26’1(3—01)
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and o; (j = 1,2) and the other a; (i=1,2; j=0,1,2) can be given by (4.3) and
(4.5) with the free parameter —1 < rj, < —2/3.

5. Numerical examples

We choose the method (3.1) with (3.10) and the method (4.1) with (4.9), and
apply them to the following two problems, respectively.

Problem 1 (¢f- [10]).
1 20
WO ==z -1+, (5.1)

3 3
where ¢ > 0, the initial value y;(0) = 3.5.

Problem 2.
, 1
W) = =33+, (5.2a)
Wy(t) =y — 2y, (5.2b)

where ¢ > 0, the initial values y;(0) = —0.4, y,(0) = 0.8.

1.5 15
1 1
S 2
i i
0.5 0.5
0 0
0 0.5 1 1.5 2 0 0.5 1 1.5 2
t t
x107°
1.4
1.2
1
2
1 0.8
|
0.6
0.4
0.2
0
0 0.5 1 1.5 2

t

Fig. 1. The method (3.1) with (3.10) for Problem 1.
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2.5 2.5
2 2
15 15
o 4
iy iy
1 1
0.5 0.5
0 0
0 2 0 2
t t
x10°
1 2.5
0.8 2
206 1.5
! e
=
04 1
0.2 0.5
0 0
0 2 0 2
t t
Fig. 2. The method (3.1) with (3.10) for Problem 2.
15 15
1 1
(=} 1
& oy
0.5 0.5
0 0
0 0.5 1 15 0 0.5 1 15
t t
x107°
12
1
» 0.8
>
w
1 0.6
o
oy
0.4
0.2
0
0 0.5 1 15 2

t

Fig. 3. The method (4.1) with (4.9) for Problem 1.
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2.5 2.5
2 2
15 15
g 2
iy s
1 1
0.5 0.5
0 0
0 1 2 3 0 1 2 3
t t
x107*
8 2.5
2
6
2 15
| >
o .
s 1
2
0.5
0 0
0 1 2 3 0 1 2 3

t t

Fig. 4. The method (4.1) with (4.9) for Problem 2.

Problems 1 and 2 belong to Fj, and the above chosen methods satisfy (1.4).
Let Fy0, Fys and Fy denote ||[f( Yo)||, /(Y| and |[f(»(¢))| with the true solution
¥(2), respectively. Figs. 1-4 list the numerical results of the above methods with
the step-size 4 = 0.0001 and the initial values given by the implicit Euler meth-
od for the problems (5.1) and (5.2), and show that the computational results
confirm our theoretical results.
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