AN ADAPTIVE MULTILEVEL METHOD FOR TIME-HARMONIC MAXWELL EQUATIONS WITH SINGULARITIES
ZHIMING CHEN*, LONG WANG†, AND WEIYING ZHENG‡

Abstract. We develop an adaptive edge finite element method based on reliable and efficient residual-based \textit{a posteriori} error estimates for low-frequency time-harmonic Maxwell’s equations with singularities. The resulting discrete problem is solved by the multigrid preconditioned minimum residual iteration algorithm. We demonstrate the efficiency and robustness of the proposed method by extensive numerical experiments for cavity problems with singular solutions which includes, in particular, scattering over screens.

Key words. Maxwell’s equations, singularities of solutions, adaptive finite element method, multigrid method

AMS subject classifications. 65N30, 65N55, 78A25

1. Introduction. Let \(\Omega \subset \mathbb{R}^3 \) be a bounded polygonal domain with two disjoint connected boundaries \(\Gamma \) and \(\Sigma \). Given a current density \(f \), we seek a time-harmonic electric field \(E \) subject to the perfectly conducting boundary condition on \(\Gamma \) and the impedance boundary condition on \(\Sigma \):

\[
\text{curl} \left(\mu_r^{-1} \text{curl} E \right) - \kappa^2 \varepsilon_r E = f \quad \text{in} \quad \Omega, \\
\mu_r^{-1} \text{curl} E \times \nu - i \kappa \lambda E_t = g \quad \text{on} \quad \Sigma, \\
E \times \nu = 0 \quad \text{on} \quad \Gamma,
\]

where \(i \) is the imaginary unit, \(\nu \) is the unit outer normal of the boundary, \(E_t := (\nu \times E|_{\Sigma}) \times \nu \), \(\varepsilon_r \) is the complex relative dielectric coefficient, \(\mu_r > 0 \) is the relative magnetic permeability of the material in \(\Omega \), \(\kappa > 0 \) is the wave number, and \(\lambda > 0 \) is the impedance on \(\Sigma \). We allow \(\Sigma \) to be empty in which case (1.1) – (1.3) models electromagnetic wave propagation in a cavity with a perfectly conducting wall. For an absorbing boundary condition approximation of a scattering problem, \(\mu_r = \lambda = 1 \) on \(\Sigma \) and \(\varepsilon_r = \mu_r = 1 \) in a neighborhood of \(\Sigma \), \(g \) can be computed from an incident field \(E_i \) (\(g = \text{curl} E_i \times \nu - i \kappa \lambda E_{i,t} \)). In this paper, we focus on low-frequency problems, i.e. \(\kappa \) is not very large.

It is now well-known that the solution of the time-harmonic Maxwell equations could have much stronger singularities than the corresponding Dirichlet or Neumann singular functions of the Laplace operator when the computational domain is non-convex or the coefficients of the equations are discontinuous. For example, for the domains that have “screen” or “crack” parts as indicated in Fig 1.1, the regularity of the solution is only in \(H^s \) with \(s < 1/2 \). In this case the \(H^1 \)-conforming discretization cannot be used directly to solve the time-harmonic cavity problem (1.1)–(1.3). One way to overcome the difficulty is to use the so-called singular field method which

*LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 100080, People’s Republic of China. This author was supported in part by China NSF under the grant 10025102 and 10428105, and by China MOST under the grant G1999032802 (zmchen@lsec.cc.ac.cn).

†LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 100080, People’s Republic of China (wangl@math.pku.edu.cn).

‡LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 100080, People’s Republic of China. This author was supported in part by China NSF under the grant 10401040 (zwy@lsec.cc.ac.cn).
decomposes the solution into a regular part that can be treated by H^1-conforming Lagrangian finite elements and an explicit singular part \cite{[2]}, \cite{[10]}, \cite{[18]}, \cite{[19]}. For the mathematical analysis of the singularities of the solutions of Maxwell equations, we refer to \cite{[8]}, \cite{[9]}, \cite{[16]}, \cite{[17]}, \cite{[18]}, and the references therein.

The first objective of this paper is to explore the possibility of extending the general framework of adaptive finite element methods based on \textit{a posteriori} error estimates initiated in \cite{[3]} to the time-harmonic Maxwell equations. \textit{A posteriori} error estimates are computable quantities in terms of the discrete solution and known data that measure the actual discrete errors without the knowledge of exact solutions. They are essential in designing algorithms for mesh modification which equi-distribute the computational effort and optimize the computation. The ability of error control and the asymptotically optimal approximation property (see e.g. \cite{[11]} and \cite{[27]}) make the adaptive finite element methods attractive for complicated physical and industrial processes (cf. e.g. \cite{[12]}, \cite{[14]}, and \cite{[15]}).

\textit{A posteriori} error estimates for \textit{Nédécé} $H(\text{curl})$-conforming edge elements are obtained in \cite{[25]} for Maxwell scattering problems and in \cite{[6]} for eddy current problems. The key ingredient in the analysis is the orthogonal Helmholtz decomposition $v = \nabla \varphi + \Psi$, where for any $v \in H(\text{curl}; \Omega)$, $\varphi \in H^1(\Omega)$, and $\Psi \in H(\text{curl}; \Omega)$. Since a stable edge element interpolation operator is not available for functions in $H(\text{curl}; \Omega)$, some kind of regularity result for $\Psi \in H(\text{curl}; \Omega)$ is required. This regularity result is proved in \cite{[25]} for domains with smooth boundary and in \cite{[6]} for convex polyhedral domains. The key observation in our analysis is that if one removes the orthogonality requirement in the Helmholtz decomposition, the regularity $\Psi \in H^1(\Omega)$ can be proved in the decomposition $v = \nabla \varphi + \Psi$ for a large class of non-convex polygonal domains or domains having screens \cite{[8]}, \cite{[9]}, see also \cite{[19]}. Our extensive numerical experiments for the lowest order edge element indicate that for the cavity problem (1.1)–(1.3) with very strong singularities $H^s (s < 1/2)$, the adaptive methods based on our \textit{a posteriori} error estimates have the very desirable quasi-optimality property

$$
\|E - E_k\|_{H(\text{curl}; \Omega)} \leq CN_k^{-1/3},
$$

where N_k is the number of elements of the k-th adaptive mesh \mathcal{T}_k, and E_k is the finite element solution over \mathcal{T}_k.

The second objective of this paper concerns the efficient solution of the large linear system of equations resulting from the edge element discretization of (1.1)–(1.3).
which is in general non-Hermitian and indefinite. We propose to use preconditioned
MINRES to solve the linear system of equations with the preconditioner is constructed
by the multigrid solver of the stiffness matrix corresponding to the discretization of
the following problem

\begin{align}
\text{curl}(\mu^{-1} \text{curl} u) + \kappa^2 |\varepsilon_r| u &= f \quad \text{in } \Omega, \\
\mu^{-1} \text{curl} u \times \nu + \kappa \lambda u_t &= g \quad \text{on } \Sigma, \\
u \times \nu &= 0 \quad \text{on } \Gamma.
\end{align}

Multigrid methods for the edge element discretization of Maxwell’s equations have
been studied in [1], [21], [22], and the references therein. An important discovery in
[22] is that for the $H(\text{curl})$-elliptic problems, multigrid relaxations must be performed
both on edges and vertices in order to guarantee the uniform convergence of the
multigrid method.

The distinct feature of applying multigrid methods on adaptively refined finite
element meshes is that the number of degrees of freedom may not grow exponentially
with respect to the number of mesh refinements k. Following the idea of “local”
problems, at each level k of our multigrid algorithm for discrete Maxwell problems, we
perform Gauß-Seidel relaxations only on new edges, new vertices, and their immediate
neighboring edges and vertices (see (4.3) and Algorithm 4.2 below). Our extensive
numerical experiments indicate that our multigrid preconditioned MINRES algorithm
has the very desirable property: for low-frequency time harmonic Maxwell equations
with very strong singularity, the numbers of iterations to reduce the initial residual
by a factor 10^{-8} remain nearly fixed on different levels of adaptively refined meshes.
We also refer to [33] for the proof of uniform convergence of “local” multigrid method
for discrete H^1-elliptic problems on adaptively refined meshes.

The rest of the paper is organized as follows: In §2, we prove Helmholtz-type de-
compositions of $H(\text{curl}; \Omega)$ and introduce conforming finite element approximations
to (1.1)–(1.3). In §3, we derive reliable and efficient residual-based a posteriori
error estimates. In §4, we describe the preconditioned MINRES algorithm. In §5, we report
several numerical experiments to show the competitive performance of the methods
proposed in this paper.

2. Helmholtz-type decompositions and finite element approximations.

We start by introducing the definition of a “screen”.

Definition 2.1. F is called a Lipschitz screen, if it is a bounded open part of
some two-dimensional C^2-smooth manifold such that its boundary ∂F is Lipschitz
continuous and F is on one side of ∂F.

Let Ω be a polyhedral domain in \mathbb{R}^3 which satisfies one of the following assump-
tions:

Hypothesis 2.2.

(i) Ω is a Lipschitz domain and $\Gamma = \partial D$, where D is a bounded Lipschitz domain
embedded in the interior of $D \cup \Omega$ (see Fig. 2.1).

(ii) Γ is a Lipschitz screen such that $\Omega \cup \Gamma$ is a Lipschitz domain (see Fig. 1.1).

(iii) $\Sigma = \emptyset$ and $\Gamma = \partial \Omega = \Gamma_{in} \cup \Gamma_{out}$ such that Γ_{in} satisfies the former two
assumptions for Γ.

We remark that in each case Ω need not to be simply connected and the domain
in the second case is even not Lipschitz. In the third case, we actually solve a time-
harmonic problem with Dirichlet boundary condition.
We introduce some notation and Sobolev spaces used in this paper. $L^2(\Omega)$ is the usual Hilbert space of square integrable functions equipped with the following inner product and norm:

$$(u, v) := \int_{\Omega} u(x) \overline{v(x)} \, dx$$

and

$$\|u\|_{0, \Omega} := (u, u)^{1/2}.$$

$H^m(\Omega) := \{v \in L^2(\Omega) : D^\xi v \in L^2(\Omega), |\xi| \leq m\}$ equipped with the following norm and semi-norm

$$\|u\|_{m, \Omega} := \left(\sum_{|\xi| \leq m} \|D^\xi u\|_{0, \Omega}^2 \right)^{1/2} \quad \text{and} \quad |u|_{m, \Omega} := \left(\sum_{|\xi| = m} \|D^\xi u\|_{0, \Omega}^2 \right)^{1/2},$$

where ξ represents non-negative triple index. $H^1_\Gamma(\Omega)$ is the subspace of $H^1(\Omega)$ whose functions have zero traces on Γ. We use boldfaced notations for vectors, such as $L^2(\Omega) := (L^2(\Omega))^3$ and so on. The following Sobolev spaces are used in the paper

- $H(\text{div}; \Omega) := \{v \in L^2(\Omega) : \text{div} v \in L^2(\Omega)\}$,
- $H(\text{curl}; \Omega) := \{v \in L^2(\Omega) : \text{curl} v \in L^2(\Omega)\}$,
- $H_{\Gamma}(\text{curl}; \Omega) := \{v \in H(\text{curl}; \Omega) \mid v \times \nu = 0 \text{ on } \Gamma \text{ and } v_t \in L^2(\Sigma)\}$.

As usual, we denote $H^1_\Omega(\Omega) := H^1(\Omega)$ and $H_0(\text{curl}; \Omega) := H_{\partial \Omega}(\text{curl}; \Omega)$ for $\Sigma = \emptyset$. $H(\text{div}; \Omega), H(\text{curl}; \Omega)$, and $H_{\Gamma}(\text{curl}; \Omega)$ are respectively equipped with the following norms:

$$\|v\|_{H(\text{div}; \Omega)} := \left(\|v\|_{0, \Omega}^2 + \|\text{div} v\|_{0, \Omega}^2 \right)^{1/2},$$

$$\|v\|_{H(\text{curl}; \Omega)} := \left(\|v\|_{0, \Omega}^2 + \|\text{curl} v\|_{0, \Omega}^2 \right)^{1/2},$$

$$\|v\|_{H_{\Gamma}(\text{curl}; \Omega)} := \left(\|v\|_{0, \Omega}^2 + \|\text{curl} v\|_{0, \Omega}^2 + \|v_t\|_{0, \Sigma}^2 \right)^{1/2}.$$

Let $f \in L^2(\Omega)$ and $g \in L^2(\Sigma)$ satisfying $g \cdot \nu = 0$ on Σ. The equivalent weak formulation of (1.1) – (1.3) is: Find $E \in H_{\Gamma}(\text{curl}; \Omega)$ such that

$$a(E, v) = \int_{\Omega} f \cdot v + \int_{\Sigma} g \cdot v_t \quad \forall v \in H_{\Gamma}(\text{curl}; \Omega),$$

where

$$a(E, v) = \frac{1}{2} \left(\int_{\Omega} \frac{\partial E}{\partial x} \cdot \frac{\partial v}{\partial x} \, dx + \int_{\partial \Omega} \frac{\partial E}{\partial n} \cdot v \, dS \right).$$
where

\[(2.2) \quad a (E, v) := (\mu r^{-1} \text{curl} E, \text{curl} v) - (\kappa^2 \epsilon r, E, v) - i \int_{\Sigma} \kappa \lambda E \cdot v.\]

The existence and uniqueness of the solution of the problem (2.1) under various conditions on the domain \(\Omega\), the coefficients \(\epsilon r, \mu r\) have been studied in [26]. Here for the sake of simplicity we simply assume that the problem (2.1) has a unique solution. Thus there exists a constant \(\beta > 0\) depending only on \(\Omega, \epsilon r, \mu r, \lambda\) and the wave \(\kappa\) such that [4, Chapter 5]

\[(2.3) \quad \sup_{0 \neq v \in H^1_{V}(\text{curl}; \Omega)} \frac{a (E, v)}{\|v\|_{H^1_{V}(\text{curl}; \Omega)}} \geq \beta \|E\|_{H^1_{V}(\text{curl}; \Omega)}.\]

Furthermore, it follows from (2.3) that there exists a constant \(C > 0\) independent of \(E, f, g\) such that

\[(2.4) \quad \|E\|_{H^1_{V}(\text{curl}; \Omega)} \leq C (\|f\|_{0, \Omega} + \|g\|_{0, \Sigma}).\]

The following Helmholtz-type decomposition theorem is applicable to polyhedral domains with smooth screens \(\mathcal{F}\).

Theorem 2.3. Let \(D\) be a bounded domain such that either

- \(D\) is a Lipschitz domain,
- \(D\) has a Lipschitz inner screen \(\mathcal{F}\) such that \(\partial D = \Gamma \cup F, \Gamma \cap F = \emptyset,\) and \(D \cup F\)
 is a Lipschitz domain (see Fig. 1.1).

Then for any \(v \in H^0_{V}(\text{curl}; D)\), there exist \(\psi \in H^1_{0}(D)\) and \(v_s \in H^1(D) \cap H^0_{V}(\text{curl}; D)\) such that

\[(2.5) \quad v = \nabla \psi + v_s \quad \text{in} \quad D,
\]

\[(2.6) \quad \|\psi\|_{1, D} + \|v_s\|_{1, D} \leq C \|v\|_{H^1(\text{curl}; D)},\]

where the constant \(C\) depends only on \(D\).

Proof. The proof for the case when \(D\) is a Lipschitz domain is contained in [19, Proposition 5.1]. For the completeness we sketch the proof here. The proof below for the case when \(D\) has a Lipschitz inner screen \(F\) simplifies the argument in [9].

Let \(\mathcal{O} := B(0, R)\) be a ball containing \(D\). We extend \(v\) by zero to the exterior of \(D\) and denote the extension by \(\tilde{v}\). Clearly \(\tilde{v} \in H^0_{V}(\text{curl}; \mathcal{O})\). By Theorem 3.4 of [20, p. 45], there exists a \(w \in H^1(\mathcal{O})\) such that

\[(2.7) \quad \text{curl} w = \text{curl} \tilde{v}, \quad \text{div} w = 0 \quad \text{in} \quad \mathcal{O},
\]

\[(2.8) \quad \|w\|_{1, \mathcal{O}} \leq C (\|\text{curl} w\|_{0, \mathcal{O}} + \|\text{div} w\|_{0, \mathcal{O}}) = C \|\text{curl} v\|_{0, D}.
\]

Moreover, by (2.7) and Theorem 2.9 of [20, p. 31], there exists a \(\varphi \in H^1(\mathcal{O})/\mathbb{R}\) such that

\[(2.9) \quad \tilde{v} = w + \nabla \varphi \quad \text{in} \quad \mathcal{O},
\]

\[(2.10) \quad \|\varphi\|_{1, \mathcal{O}} \leq C \|\varphi\|_{1, \mathcal{O}} \leq C \|v\|_{H^1(\text{curl}, D)},
\]

\[(2.11) \quad \|\varphi\|_{2, \mathcal{O} \setminus D} \leq \|w\|_{1, D} \leq C \|\text{curl} v\|_{0, D}.
\]
Since $O \setminus D$ is a Lipschitz domain, by Stein’s extension theorem [32, Theorem 5, p. 181], there exists an extension of $\varphi|_{O \setminus D}$ denoted by $\tilde{\varphi} \in H^2(\mathbb{R}^3)$ such that

$$\tilde{\varphi} = \varphi \text{ in } O \setminus D \text{ and } \|\tilde{\varphi}\|_{2, \mathbb{R}^3} \leq C\|\varphi\|_{2, O \setminus D} \leq C\|v\|_{H(\text{curl}; D)}.$$

This completes the proof for the case when D is a Lipschitz domain by setting $\psi = \varphi - \tilde{\varphi} \in H^1_0(D)$ and $v_s = w + \nabla \tilde{\varphi} \in H^1(D) \cap H^1_0(\text{curl}; D)$.

If D has a smooth screen $F \subset D$ such that $\partial D = \Gamma \cup F$ and $\Gamma \cap F = \emptyset$, we choose a closed C^2-smooth surface $F_0 \supset F$ such that $F_0 \cap \partial D = \emptyset$. In view of (2.9), we know that $\nabla \varphi = (\nu \times \nabla \varphi) \times \nu = \nu \times (\nu \times w) \in H^{1/2}(F)$, thus $\varphi|_F \in H^{3/2}(F)$, where

$$H^{i+1/2}(F) = \{v|_F : v \in H^{i+1/2}(F_0)\},$$

$$\|v\|^2_{i+1/2, F} = \|v\|^2_{i, F} + \int_F \int_F \frac{|\nabla_F v(x) - \nabla_F v(y)|^2}{|x - y|^3} ds_x ds_y \quad i = 0, 1.$$

Since F is a smooth surface with Lipschitz continuous boundary, we may extend $\varphi|_F$ to $F_0 \setminus F$ by virtue of Stein’s extension theorem (see Remark 2.4). We denote the extension by $\varphi_F \in H^{3/2}(F_0)$ which satisfies, by (2.8) and (2.11),

$$\varphi_F = \varphi \text{ on } F,$$

$$\|\varphi_F\|_{3/2, F_0} \leq C\|\varphi\|_{3/2, F} \leq C(\|\varphi\|_{1, O} + \|w\|_{1, O}) \leq C\|v\|_{H(\text{curl}; D)}.$$

Since $\tilde{\varphi} \in H^2(\mathbb{R}^3)$, we have $\tilde{\varphi} \in H^{3/2}(F_0)$. Thus $\varphi_F - \tilde{\varphi} \in H^{3/2}(F_0)$ which we may extend to be a function $\varphi_0 \in H^2_0(D)$ satisfying

$$\varphi_0 = \varphi_F - \tilde{\varphi} \text{ on } F \quad \text{and} \quad \|\varphi_0\|_{2, D} \leq C\|\varphi_F - \tilde{\varphi}\|_{3/2, F_0} \leq C\|v\|_{H(\text{curl}; D)},$$

where we have used (2.12)–(2.14). Define $\psi := \varphi - \tilde{\varphi} - \varphi_0 \in H^1_0(D)$ and $v_s := w + \nabla \varphi + \nabla \tilde{\varphi} \in H^1(D) \cap H^1_0(\text{curl}; D)$. Combining (2.8), (2.12), and (2.15) leads to (2.5) and (2.6).

Remark 2.4. Here we explain the extension of functions in $H^{3/2}(F)$ to functions in $H^{3/2}(F_0)$ in the proof of Theorem 2.3. Let $F_1 \subset F_0$ have C^2-smooth boundary such that $F \subset F_1$. Clearly there exists a C^2-smooth mapping $\Phi : F_1 \rightarrow \mathbb{R}^2$ such that $\Phi(F_1)$ is bounded and has C^2-smooth boundary. Thus $\Phi(F)$ has Lipschitz boundary and $\nu \circ \Phi \in H^{3/2}(\Phi(F))$ for any $v \in H^{3/2}(F)$.

Stein’s extension theorem [32, Theorem 5, p.181] guarantees the extension of $H^m(\Omega)$ to $H^m(\mathbb{R}^3)$ for any Lipschitz domain Ω and integer $m \geq 0$. Hence by the interpolation theorem, there exists a function $\tilde{v} \in H^{3/2}(\mathbb{R}^2)$ such that $\text{supp}(\tilde{v}) = \Phi(F_1)$ and $\tilde{v} = v \circ \Phi$ in $\Phi(F)$. We define the extension $\hat{v} \in H^{3/2}(F_0)$ of v by

$$\hat{v} = \tilde{v} \circ \Phi^{-1} \text{ on } F_1 \quad \text{and} \quad \hat{v} = \hat{v} \text{ on } F \setminus F_1.$$

Theorem 2.5. Let Ω be a bounded domain with boundary $\partial \Omega = \Sigma \cup \Gamma$ and satisfy Hypothesis 2.2. For any $v \in H^1(\Omega; \text{curl})$ satisfying $v \times \nu = 0$ on Γ, there exists a function $v_s \in H^1(\Omega; \text{curl})$ such that

$$v = \nabla \varphi + v_s \text{ in } \Omega,$$

$$\|v_s\|_{1, \Omega} + \|\varphi\|_{1, \Omega} \leq C\|v\|_{H(\text{curl}; \Omega)}.$$
Proof. For the case (iii) in Hypothesis 2.2, Theorem 2.5 follows directly from Theorem 2.3. For the case (i) in Hypothesis 2.2, \(\Gamma = \partial D \) with \(D \) being a bounded Lipschitz domain and \(D \) embedded in the interior of \(\Omega \cup \bar{D} \). Let \(O \) be a ball containing \(\Omega \). Extend \(\nu \) by zero to \(D \) such that the extension \(\tilde{\nu} \in H(\text{curl}; \Omega \cup \bar{D}) \). By Lemma 2.2 of \[13\], we may extend \(\tilde{\nu} \) to the exterior of \(\Omega \cup \bar{D} \) such that the extension \(E \tilde{\nu} \in H_0(\text{curl}; O) \) and

\[
E \tilde{\nu} = \nu \quad \text{in} \quad \Omega \cup \bar{D},
\]

\[
\|E \tilde{\nu}\|_{H(\text{curl}; O)} \leq C \|\nu\|_{H(\text{curl}; \Omega)},
\]

where \(C \) depends only on \(\Omega \). Since \(E \tilde{\nu} \in H_0(\text{curl}; \Omega \setminus \bar{D}) \), by Theorem 2.3, there exist \(\varphi \in \mathcal{H}_0^1(\Omega \setminus \bar{D}) \) and \(\nu_s \in H^1(\Omega \setminus \bar{D}) \cap H_0(\text{curl}; \Omega \setminus \bar{D}) \) such that

\[
E \tilde{\nu} = \nabla \varphi + \nu_s \quad \text{in} \quad \Omega \setminus \bar{D},
\]

\[
\|\varphi\|_{L^2(\Omega \setminus \bar{D})} + \|\nu_s\|_{L^2(\Omega \setminus \bar{D})} \leq C \|E \tilde{\nu}\|_{H(\text{curl}; \Omega \setminus \bar{D})} \leq C \|\nu\|_{H(\text{curl}; \Omega)},
\]

where the constant \(C \) depends only on \(\Omega \). Clearly, \(\varphi \) and \(\nu_s \) matches all requirements in Theorem 2.5. The case (ii) of Hypothesis can be proved similarly using Theorem 2.3. \(\square \)

Remark 2.6. The decompositions in Theorem 2.3 and 2.5 extends the so-called Birman-Solomyak decomposition of \(H_0(\text{curl}; \Omega) \) in \[8\], \[19\], and \[29\].

Let \(T_k \) be a sequence of tetrahedral triangulations of \(\Omega \) and \(F_k \) be the set of faces not lying on \(\Gamma \), \(k \geq 0 \). The finite element space \(U_k \) over \(T_k \) is defined by

\[
U_k := \{ u \in H(\text{curl}; \Omega) : u \times \nu|_T = 0 \quad \text{and} \quad u|_T = a_T + b_T \times x \quad \text{with} \quad a_T, b_T \in \mathbb{R}^3, \quad \forall T \in T_k \}.
\]

Degrees of freedom on every \(T \in T_k \) are \(\int_{E_i} u \cdot d1, \quad i = 1, \ldots, 6 \), where \(E_1, \ldots, E_6 \) are six edges of \(T \). For any \(T \in T_k \) and \(F \in \mathcal{F}_k \), we denote the diameters of \(T \) and \(F \) by \(h_T \) and \(h_F \) respectively.

The finite element approximation to (2.1) is: Find \(E_k \in U_k \) such that

\[
a(E_k, \nu) = \int_\Omega f \cdot \nabla + \int_\Sigma g \cdot \nabla\nu, \quad \forall \nu \in U_k.
\]

3. Residual based a posteriori error estimates. Let \(E \) and \(E_k \) be the solutions of (2.1) and (2.18) respectively. Define the total error function by \(\mathbf{e}_k := E - E_k \). By (2.3), we know that

\[
\|\mathbf{e}_k\|_{H^1(\text{curl}; \Omega)} \leq \beta^{-1} \sup_{\nu \in H^1(\text{curl}; \Omega)} \frac{a(E_k, \nu)}{\|\nu\|_{H^1(\text{curl}; \Omega)}}.
\]

To derive a posteriori error estimates, we introduce the Scott-Zhang Operator \(T_k : H^1(\Omega) \to V_k \) \[31\] and the Beck-Hiptmair-Hoppe-Wohlmuth Operator \(\Pi_k : H^1(\Omega) \cap H(\text{curl}; \Omega) \to U_k \) \[6\], where \(V_k \) is the piecewise linear \(H^1(\Omega) \)-conforming finite element space over \(T_k \) defined by

\[
V_k := \{ v \in H^1(\Omega) : v|_T = a_T + b_T \cdot x \quad \text{with} \quad a_T \in \mathbb{R}^1 \text{ and } b_T \in \mathbb{R}^3, \quad \forall T \in T_k \}.
\]
\(I_k \) and \(\Pi_k \) satisfy the following approximation and stability properties: for any \(T \in T_k \), \(F \in \mathcal{F}_k \),

\[
\begin{align*}
I_k \phi_h &= \phi_h \quad \forall \phi_h \in V_k, \\
\| \nabla I_k \phi \|_{0,T} &\leq C |\phi|_{1,D_T}, \\
\| \phi - I_k \phi \|_{0,T} &\leq C h_T |\phi|_{1,D_T}, \\
\| \phi - I_k \phi \|_{0,F} &\leq C h_F^{1/2} |\phi|_{1,D_F},
\end{align*}
\]

(3.3)

and

\[
\begin{align*}
\Pi_k w_h &= w_h \quad \forall w_h \in U_k, \\
\| \Pi_k w \|_{H(\text{curl}; T)} &\leq C \| w \|_{1,D_T}, \\
\| w - \Pi_k w \|_{0,T} &\leq C h_T |w|_{1,D_T}, \\
\| w - \Pi_k w \|_{0,F} &\leq C h_F^{1/2} |w|_{1,D_F},
\end{align*}
\]

(3.4)

where \(D_A \) is the union of elements in \(T_k \) with non-empty intersection with \(A, A = T \) or \(F \). In (3.3) and (3.4), the constant \(C \) depends on the ratio of the diameter of \(T \) to the diameter of the maximal ball contained in \(T \). In the procedure of mesh refinements, each element is similar to one of a small number of reference triangles in shape (see [30]). Thus all element keep shape-regular and \(C \) is bounded indeed.

By Theorem 2.5, for any \(v \in H(\text{curl}; \Omega) \), there exist a \(\varphi \in H^1_0(\Omega) \) and a \(v_s \in H^1(\Omega) \cap H(\text{curl}; \Omega) \) such that

\[
\begin{align*}
&v = \nabla \varphi + v_s, \\
&\| \varphi \|_{1,\Omega} + \| v_s \|_{1,\Omega} \leq C \| v \|_{H(\text{curl}; \Omega)},
\end{align*}
\]

(3.5, 3.6)

where the constant \(C \) depends only on \(\Omega \). Since \(\nabla I_k \varphi \) and \(\Pi_k v_s \) belong to \(U_k \), by the Galerkin orthogonality, we have

\[
\begin{align*}
a(e_k, v) &= a(e_k, \nabla \varphi - \nabla I_k \varphi) + a(e_k, v_s - \Pi_k v_s) \quad \forall v \in H(\text{curl}; \Omega).
\end{align*}
\]

(3.7)

For any face \(F \in \mathcal{F}_k \), assuming \(F = T_1 \cap T_2, T_1, T_2 \in T_k \) and the unit normal \(\nu \) points from \(T_2 \) to \(T_1 \), we denote the jump of a function \(v \) across \(F \) by \([v]_F := v_{|T_1} - v_{|T_2} \).

Lemma 3.1. Let \(g \in L^2(\Sigma) \) satisfying \(\text{div}_\Sigma g \in L^2(\Sigma) \) and \(g \cdot \nu = 0 \) on \(\Sigma \). There exists a constant \(C_0 \) independent of \(\kappa \) and the mesh \(T_k \) such that

\[
\begin{align*}
&\begin{align*}
&\left(\sum_{T \in T_k} \eta_{0,T}^2 + \sum_{F \in \mathcal{F}_k} \eta_{0,F}^2 + \sum_{F \subset \Sigma} \eta_{0,\Sigma,F}^2 \right) \left\| v \right\|_{H(\text{curl}; \Omega)},
\end{align*}
\end{align*}
\]

(3.8)

where the the surface divergence \(\text{div}_\Sigma \) on \(\Sigma \) is defined by the \(L^2 \)-duality of the surface gradient \(\nabla_\Sigma := -\nu \times (\nu \times \nabla) \), and the error indicators are defined by

\[
\begin{align*}
&\eta_{0,T} := h_T \| \text{div}(\kappa^2 \varepsilon_r E_k) \|_{0,T}, \\
&\eta_{0,F} := h_F^{1/2} \| [\kappa^2 \varepsilon_r E_k] \cdot \nu \|_{0,F}, \\
&\eta_{0,\Sigma,F} := h_F^{1/2} \| \text{div}_\Sigma (g + i \kappa \lambda E_k) \|_{0,F}.
\end{align*}
\]
We reach (3.8) by virtue of Schwartz's inequality, (3.3), and (3.6).

Integration by part, we deduce that

$$
E_r \leq \sum_{T \in \mathcal{T}_k} \int_T \| \nabla (k^2 \varepsilon_r E_k) \|_{0,T} \| \varphi - I_k \varphi \|_{0,T} + \sum_{F \in \mathcal{F}_k} \int_F \| [k^2 \varepsilon_r E_k \cdot \nu]_F \|_{0,F} \| \varphi - I_k \varphi \|_{0,F}
$$

$$
+ \sum_{F \subset \Sigma} \| \nabla (g + i \kappa \lambda E_{k,t}) \|_{0,F} \| \varphi - I_k \varphi \|_{0,F}.
$$

We reach (3.8) by virtue of Schwartz's inequality, (3.3), and (3.6). □

Lemma 3.2. There exists a constant C_1 independent of κ and the mesh T_k such that

$$
a(e_k, v_s - \Pi_k v_s) \leq C_1 \left(\sum_{T \in \mathcal{T}_k} \eta^2_{1,T} + \sum_{F \in \mathcal{F}_k} \eta^2_{1,F} + \sum_{F \subset \Sigma} \eta^2_{1,F} \right)^{1/2} \| v \|_{H(\text{curl}, \Omega)},
$$

where

$$
\eta_{1,T} = h_T \| f + k^2 \varepsilon_r E_k - \text{curl} (\mu_r^{-1} \text{curl} E_k) \|_{0,T},
$$

$$
\eta_{1,F} = h_F^{1/2} \| [\mu_r^{-1} \text{curl} E_k \times \nu]_F \|_{0,F},
$$

$$
\eta_{1,F} = h_F^{1/2} \| g + i \kappa \lambda E_{k,t} + \nu \times \mu_r^{-1} \text{curl} E_k \|_{0,F}.
$$

Proof. By (2.1) and the formula of integration by part, we deduce that

$$
a(e_k, v_s - \Pi_k v_s)
$$

$$
= \sum_{T \in \mathcal{T}_k} \int_T (f + k^2 \varepsilon_r E_k - \text{curl} (\mu_r^{-1} \text{curl} E_k)) \cdot (v_s - \Pi_k v_s)
$$

$$
+ \sum_{F \in \mathcal{F}_k} \int_F [\nu \times \mu_r^{-1} \text{curl} E_k]_F \cdot (v_s - \Pi_k v_s)
$$

$$
+ \sum_{F \subset \Sigma} \int_F (g + i \kappa \lambda E_{k,t} + \nu \times \mu_r^{-1} \text{curl} E_k) \cdot (v_s - \Pi_k v_s)
$$

$$
\leq \sum_{T \in \mathcal{T}_k} \| f + k^2 \varepsilon_r E_k - \text{curl} (\mu_r^{-1} \text{curl} E_k) \|_{0,T} \| v_s - \Pi_k v_s \|_{0,T}
$$

$$
+ \sum_{F \in \mathcal{F}_k} \| [\mu_r^{-1} \text{curl} E_k \times \nu]_F \|_{0,F} \| v_s - \Pi_k v_s \|_{0,F}
$$

$$
+ \sum_{F \subset \Sigma} \| g + i \kappa \lambda E_{k,t} + \nu \times \mu_r^{-1} \text{curl} E_k \|_{0,F} \| v_s - \Pi_k v_s \|_{0,F}.
$$
We reach (3.9) by Schwartz’s inequality, (3.4), and (3.6). □

Combining (3.1) and (3.7) – (3.9) leads to the following theorem.

Theorem 3.3. Let \(g \in L^2(\Sigma) \) satisfying \(\text{div}_\Sigma g \in L^2(\Sigma) \) and \(g \cdot \nu = 0 \) on \(\Sigma \). Then

\[
\|e_k\|_{H^1(\text{curl}; \Omega)}^2 \leq \frac{2(C_0^2 + C_1^2)}{\beta^2} \sum_{i=0}^{1} \left\{ \sum_{T \in T_k} \eta_{0,T}^2 + \sum_{F \in F_k} \eta_{0,F}^2 + \sum_{F \in \Sigma} \eta_{0,\Sigma,F}^2 \right\},
\]

where \(\beta, C_0, \) and \(C_1 \) is the constants in (2.3), (3.8), and (3.9).

Similar to the argument in [6, Section 5], we can prove the following lower bound estimates.

Theorem 3.4. If the material parameters \(\mu_r, \epsilon_r, \) and \(\lambda \) are piecewise constants, there exists a constant \(C \) depending on \(\mu_r, \epsilon_r, \lambda, \) and \(\kappa \), but independent of the mesh \(T_k \) such that

\[
\sum_{T \in T_k} (\eta_{0,T}^2 + \eta_{1,T}^2) + \sum_{F \in F_k} (\eta_{0,F}^2 + \eta_{1,F}^2) + \sum_{F \in \Sigma} (\eta_{0,\Sigma,F}^2 + \eta_{1,\Sigma,F}^2) \leq C \|e_k\|_{H(\text{curl}; \Omega)}^2 + C \sum_{T \in T_k} h_T^2 \|f - P_T f\|_{0,T}^2 + C \sum_{F \in \Sigma} h_F \|	ext{div}_\Sigma (g - P_{\text{div}} F)\|_{0,F}^2
\]

\[
+ C \sum_{F \in \Sigma} h_F \|g - P_{\text{div}} F\|_{0,F}^2,
\]

where \(P_T : L^2(T) \to P_2(T) \) and \(P_F : L^2(F) \to P_2(F) \) are \(L^2 \)-projections, and \(P_{\text{div}} : H(\text{div}; F) \to P_1(F) \) is the \(H(\text{div}) \)-projection. \(P_k(D) \) is the space of vector polynomials of maximum degree \(k \) defined on \(D, D = T \) or \(F \).

4. Multigrid preconditioned MINRES algorithm. In this section we introduce our preconditioned MINRES (PMINRES) algorithm for solving (2.18). Our preconditioner is a multigrid solver of the stiffness matrix corresponding to the following coercive and Hermitian sesquilinear form on \(U_k \):

\[
(a_{mg}(u, v) := (\mu_r^{-1} \text{curl} u, \text{curl} v) + (\kappa^2 |\epsilon_r| u, v) + \int_\Sigma \kappa \lambda \nabla u \cdot \nabla v.
\]

It is easy to see that \(a_{mg}(. , .) \) is the sesquilinear form corresponding to the variational formulation of (1.4) – (1.6).

Let \(T_0, \ldots, T_j \) be a sequence of nested triangulations by repeated adaptive refinements. Let \(U_k \) be the finite element space in (2.18) and \(V_k \) be the linear Lagrangian finite element space in (3.2) over \(T_k \). Denote the canonical basis of \(U_k \) by \(\{w^{(k)}_1, \ldots, w^{(k)}_{n_k}\} \) and the canonical basis of \(V_k \) by \(\{\phi^{(k)}_1, \ldots, \phi^{(k)}_{n_k}\} \), where \(n_k \) and \(\tilde{n}_k \) are respectively the numbers of edges and vertices not on \(\Gamma \).

We now specify the local multigrid algorithm for the solution of the following algebraic system of equations

\[
A_k X_k = F_k,
\]

where \(A_k = (a_{mg}(w^{(k)}_i, w^{(k)}_j))_{n_k \times n_k} \). The algorithm is based on the following space
decomposition proposed in [7]:

\[
U_J = U_0 + \sum_{k=1}^{J} \sum_{E \in E_k} \text{span} \{ w_E \} + \sum_{k=1}^{J} \sum_{a \in V_k} \text{span} \{ \nabla \phi_a \},
\]

where E_k is the set of new edges and the edges of T_k belonging to common elements with new edges, and V_k is the set of new vertices and the vertices of T_k belonging to common elements with new vertices. None of the edges and vertices in (4.3) is on Γ. The algorithm of multigrid V-cycle is defined recursively by (see [5] for a multigrid preconditioned iterative scheme for the Helmholtz equation):

Algorithm 4.1. Multigrid V-cycle:

\[
\text{MGSolver}(A_J, F_J, m) \quad \{ \text{Given initial guess } X_0 \}
\]

For $l = 0 : m-1$

\[
X_{l+1} \leftarrow \text{MG}(J, A_J, F_J, X_l)
\]

return X_m

\[
\text{MG}(j, A_j, f, x), j = 0, \ldots, J \quad \text{recursively defined by}
\]

\[
\begin{cases}
\text{if } (j = 0) & \text{return } A_0^{-1} f \\
\text{else} & \\
\quad x \leftarrow \text{GSsmooth}(A_j, f, x) \quad \text{[Pre-smoothing]} \\
\quad y \leftarrow \text{MG}(j-1, A_{j-1}, R_j^{-1}(f - A_j x), 0) \\
\quad x \leftarrow x + T_j^{-1} y \\
\quad x \leftarrow \text{GSsmooth}(A_j, f, x) \quad \text{[Post-smoothing]}
\end{cases}
\]

In Algorithm 4.1, T_{j-1} is a $n_j \times n_{j-1}$ matrix reflecting the identical embedding $U_{j-1} \hookrightarrow U_j$ such that

\[
\sum_{i=1}^{n_{j-1}} y_i w_i^{(j-1)} = \sum_{i=1}^{n_j} (T_j^{-1} y)_i w_i^{(j)}.
\]

We choose the restriction matrix R_j^{-1} to be the transpose of T_j^{-1}, that is $R_j^{-1} = (T_j^{-1})^T$. Define $A_{j-v} = \left(a_{\phi_m^{(j-i)}, \phi_n^{(j-i)}} \right)_{n_j \times n_j}$ and \mathcal{T}_j^v to be a $n_j \times n_j$ matrix reflecting the identical embedding $\nabla V_j \hookrightarrow U_j$ such that

\[
\sum_{i=1}^{n_j} y_i \nabla \phi_i^{(j)} = \sum_{i=1}^{n_j} (\mathcal{T}_j^v y)_i w_i^{(j)}.
\]

\text{GSsmooth}(A_j, f, x) is the Gauß-Seidel iterations on level j with initial guess x.

Algorithm 4.2. Gauß-Seidel sweeping:
5. Adaptive algorithm and numerical results. The implementation of our adaptive algorithm is based on the adaptive finite element package ALBERT [30] and is carried out on Origin 3800. We define the local a posteriori error estimator over an element $T \in \mathcal{T}_h$ by

$$\eta_T := \left(\eta^2_T + \eta^2_{\partial T} + \frac{1}{2} \sum_{F \in \partial T} (\eta^2_{\partial F} + \eta^2_{\partial, F} + \eta^2_{\partial, \Sigma, F} + \eta^2_{\partial, \Sigma, F}) \right)^{1/2}$$

and define the global a posteriori error estimate, the maximal element error estimate over \mathcal{T}_h respectively by

$$(5.1) \quad \eta_h := \left(\sum_{T \in \mathcal{T}_h} \eta^2_T \right)^{1/2}, \quad \eta_{\text{max}} = \max_{T \in \mathcal{T}_h} \eta_T.$$

Now we describe the adaptive algorithm used in this paper.

Algorithm 5.1. Given a tolerance $\text{Tol} > 0$ and the initial mesh \mathcal{T}_0. Set $\mathcal{T}_h = \mathcal{T}_0$.

(I) Solve the discrete problem (2.18) on \mathcal{T}_0.

(II) Compute the local error estimator η_T on each $T \in \mathcal{T}_0$, the global error estimate η_h, and the maximal element error estimate η_{max}.

(III) While $\eta_h > \text{Tol}$ do

- Refine the mesh \mathcal{T}_h according to the following strategy

 if $\eta_T > \frac{2}{3} \eta_{\text{max}}$, refine the element $T \in \mathcal{T}_h$.

- Solve the discrete problem (2.18) on \mathcal{T}_h.

- Compute the local error estimator η_T on each $T \in \mathcal{T}_h$, the global error estimate η_h, and the maximal element error estimate η_{max}.

end while.

In the following, we report several numerical experiments to demonstrate the competitive behavior of the proposed algorithm. In our PMINRES solver, we use only one step of local multigrid iteration and one Gauss-Seidel sweep for pre- and post-smoothing.

Example 5.1. We consider the Maxwell equation (1.1) on the three-dimensional “L-shaped” domain $\Omega = (-1, 1)^3 \setminus \{(0, 1) \times (-1, 0) \times (-1, 1)\}$. Let $\mu_r = \kappa^2 \varepsilon_r = 1$ and $\Gamma = \partial \Omega$. The Dirichlet boundary condition and the source f are so chosen that the exact solution is $E := \nabla \left\{ r^{1/2} \sin(\phi/2) \right\}$ in cylindrical coordinates.

Fig. 5.1 shows the curves of $\log \| E - E_h \|_{H^1(\text{curl}; \Omega)}$ versus $\log N_k$, where N_k is the number of elements and E_h is the finite element solution of (2.18) over the mesh \mathcal{T}_k.
Fig. 5.2 shows the log $\eta_k - \log N_k$ curves, where η_k is the associated a posteriori error estimate over T_k defined in Theorem 3.3. They indicate that the adaptive meshes and the associated numerical complexity are quasi-optimal, i.e.

\begin{align}
\eta_k &= C N_k^{-1/3} \quad \text{and} \\
\|E - E_k\|_{H(\text{curl}; \Omega)} &= C N_k^{-1/3}
\end{align}

are valid asymptotically. They also show clearly the advantage of adaptive method compared with the uniform refinements.

![Graph showing log-log plot]

Fig. 5.1. Quasi-optimality of the adaptive mesh refinements of the error $\|u - u_h\|_{H(\text{curl}; \Omega)}$ (Example 5.1).

Fig. 5.3 shows an adaptive mesh of 18,874,368 elements after 12 adaptive iterations. We observe that the mesh is locally refined near the corner line $x_1 = x_2 = 0$ where the solution is singular.

Table 5.1 shows the numbers of PMinRes iterations required to reduce the initial residual by a factor 10^{-8} on different levels. We observe that PMinRes algorithm converges in very few steps with the number of degrees of freedom varying from 722 to 1,616,983. Fig. 5.4 shows the CPU time versus the number of degrees of freedom on different adaptive meshes.

<table>
<thead>
<tr>
<th>Level</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOFs</td>
<td>722</td>
<td>5668</td>
<td>26810</td>
<td>138667</td>
<td>319360</td>
<td>725217</td>
<td>1616983</td>
</tr>
<tr>
<td>N_{itrs}</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Fig. 5.2. Quasi-optimality of the adaptive mesh refinements of the a posteriori error estimate (Example 5.1).

Fig. 5.3. An adaptively refined mesh of 18,874,368 elements after 12 adaptive iterations (Example 5.1).
Fig. 5.4. CPU time for PMINRES iterations on adaptively refined grids (Example 5.1).

Example 5.2. We consider a time-harmonic problem containing an inner screen
\[\Gamma := \{(x, y, z) : -0.5 \leq x, z \leq 0.5, \quad y = 0\} \].
We define \(\Omega = (-1, 1)^3 \setminus \Gamma \) and
\(\Sigma = \partial \Omega \setminus \Gamma \). We set \(\mu_r = \varepsilon_r = \lambda = 1 \) in (1.1) and (1.2) and define
\[
\mathbf{f} := 0, \quad \mathbf{g} := \text{curl} \mathbf{E}_i \times \nu - i \kappa \mathbf{E}_{i,t},
\]
where \(\mathbf{E}_i = (e^i y, 0, e^i y)^T / \sqrt{2} \) perpendicular to the perfect conducting “screen”. Thus
(1.1)–(1.3) models the scattering by \(\Gamma \) under the incident field \(\mathbf{E}_i \). In this case, only \(H^s \)-regularity \(s < 1/2 \) of the solution is guaranteed.

Fig. 5.5 – Fig. 5.8 show the results for \(\kappa = 1 \) in (1.1) and (1.2), while Fig. 5.7 and Fig. 5.9 show the result for \(\kappa > 1 \).

Fig. 5.5 shows the log \(\eta_k \) vs log \(N_k \) curves and indicate that the adaptive meshes
and the associated numerical complexity are quasi-optimal and (5.2) is valid asymptotically. It also shows clearly the advantage of adaptive method compared with the uniform refinements.

Table 5.2 shows the numbers of PMINRES iterations required to reduce the initial
residual by a factor \(10^{-8} \) on different levels. We observe that it remains nearly fixed
with the number of degrees of freedom varying from 1,322 to 1,513,049.

Fig. 5.6 shows the CPU time versus the number of degrees of freedom on different
adaptive meshes.

Fig. 5.8 shows an adaptive mesh of 2,947,848 elements after 11 adaptive iterations.
We observe that the mesh is locally refined near the boundary of the “screen”.

\(e^i y \)
Fig. 5.5. Quasi-optimality of the adaptive mesh refinements of the a posteriori error estimate (Example 5.2).

Fig. 5.6. CPU time for PMINRES iterations on adaptively refined meshes (Example 5.2).
Table 5.2
The Number of PMINRES iterations \((N_{\text{itrs}})\) required to reduce the initial residual by a factor \(10^{-8}\) (Example 5.2).

<table>
<thead>
<tr>
<th>(\kappa^2)</th>
<th>Level</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa^2 = 1)</td>
<td>DOFs</td>
<td>1322</td>
<td>18376</td>
<td>74655</td>
<td>137309</td>
<td>258991</td>
<td>599640</td>
<td>1022905</td>
</tr>
<tr>
<td>(\kappa_{\text{itrs}})</td>
<td>36</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>(\kappa^2 = 1.5)</td>
<td>DOFs</td>
<td>604</td>
<td>6252</td>
<td>34471</td>
<td>74415</td>
<td>133960</td>
<td>254531</td>
<td>591946</td>
</tr>
<tr>
<td>(\kappa_{\text{itrs}})</td>
<td>36</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>(\kappa^2 = 10)</td>
<td>DOFs</td>
<td>604</td>
<td>18040</td>
<td>33302</td>
<td>72094</td>
<td>133515</td>
<td>250203</td>
<td>580971</td>
</tr>
<tr>
<td>(\kappa_{\text{itrs}})</td>
<td>44</td>
<td>56</td>
<td>58</td>
<td>56</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>(\kappa^2 = 20)</td>
<td>DOFs</td>
<td>604</td>
<td>32163</td>
<td>34225</td>
<td>46611</td>
<td>131532</td>
<td>278454</td>
<td>488868</td>
</tr>
<tr>
<td>(\kappa_{\text{itrs}})</td>
<td>272</td>
<td>1091</td>
<td>1035</td>
<td>1068</td>
<td>879</td>
<td>854</td>
<td>833</td>
<td></td>
</tr>
<tr>
<td>(\kappa^2 = 36)</td>
<td>DOFs</td>
<td>604</td>
<td>3938</td>
<td>14956</td>
<td>40788</td>
<td>100672</td>
<td>184125</td>
<td>330495</td>
</tr>
<tr>
<td>(\kappa_{\text{itrs}})</td>
<td>845</td>
<td>1917</td>
<td>3358</td>
<td>2166</td>
<td>2167</td>
<td>2231</td>
<td>2314</td>
<td></td>
</tr>
<tr>
<td>(\kappa^2 = 64)</td>
<td>DOFs</td>
<td>604</td>
<td>3603</td>
<td>16212</td>
<td>53104</td>
<td>55350</td>
<td>74246</td>
<td>212931</td>
</tr>
<tr>
<td>(\kappa_{\text{itrs}})</td>
<td>2413</td>
<td>7012</td>
<td>6852</td>
<td>6757</td>
<td>6424</td>
<td>6547</td>
<td>7302</td>
<td></td>
</tr>
<tr>
<td>(\kappa^2 = 100)</td>
<td>DOFs</td>
<td>604</td>
<td>7224</td>
<td>19516</td>
<td>27888</td>
<td>45018</td>
<td>47534</td>
<td>162770</td>
</tr>
<tr>
<td>(\kappa_{\text{itrs}})</td>
<td>2464</td>
<td>55223</td>
<td>15916</td>
<td>9437</td>
<td>17278</td>
<td>10479</td>
<td>15775</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.7. Quasi-optimality of the adaptive mesh refinements of the a posteriori error estimate for \(\kappa^2 = 1.5, 10, 20, 36, 64, 100\) (Example 5.2).
Fig. 5.8. An adaptively refined mesh of 2,947,848 elements after 11 adaptive iterations (Example 5.2).

Fig. 5.9. CPU time for PMINRES iterations on adaptively refined meshes for $\kappa^2 = 1.5, 10, 20, 36, 64, 100$ (Example 5.2).
Example 5.3. This experiment is to test the robustness of our method for cavity problems on non-Lipschitz domains. The scatter consists of two perfect tetrahedral conductors S_1 and S_2 with vertices

$S_1: (0, 0, 0), (0.5, 0.5, -0.5), (0, 0.5, -0.5), (0, 0, -0.5)$ and

$S_2: (0, 0, 0), (-0.5, -0.5, 0.5), (0, -0.5, 0.5), (0, 0, 0.5)$.

The computational domain is defined by $\Omega = (-1, 1)^3 \setminus (S_1 \cup S_2)$ (see Fig. 5.10). We set all material parameters, the righthand side f, and the boundary condition g in (1.1) and (1.2) the same as those in the second experiment.

Fig. 5.11 shows the log η_k – log N_k curves and indicate that the adaptive meshes and the associated numerical complexity are quasi-optimal and (5.2) is valid asymptotically. It also shows clearly the advantage of adaptive method compared with the uniform refinements.

Table 5.3 shows the numbers of PMINRES iterations required to reduce the initial residual by a factor 10^{-8} on different levels. We observe that it remains nearly fixed with the number of degrees of freedom varying from 2,102 to 1,394,075.

Fig. 5.12 shows the CPU time versus the number of degrees of freedom on different adaptive meshes.

Fig. 5.13 shows an adaptive mesh of 1,856,117 elements after 15 adaptive iterations. We observe that the mesh is locally refined near the boundary of the scatter.
Fig. 5.11. Quasi-optimality of the adaptive mesh refinements of the a posteriori error estimate (Example 5.3).

Fig. 5.12. CPU time for PMINRES iterations on adaptively refined meshes (Example 5.3).
Table 5.3
The Number of PMINRES iterations (N_{itr}) required to reduce the initial residual by a factor 10^{-8} (Example 5.3).

<table>
<thead>
<tr>
<th>Level</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOFs</td>
<td>2102</td>
<td>11134</td>
<td>33437</td>
<td>74735</td>
<td>179603</td>
<td>450971</td>
<td>903251</td>
<td>1394075</td>
</tr>
<tr>
<td>N_{itr}</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>40</td>
<td>41</td>
<td>41</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>

Fig. 5.13. An adaptively refined mesh of 1856117 elements after 15 adaptive iterations (Example 5.3).

REFERENCES

(2000), pp. 159-182.

