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Abstract.

In this paper we study inexact inverse iteration for solving the generalised eigenvalue
problem Ax = λMx. We show that inexact inverse iteration is a modified Newton
method and hence obtain convergence rates for various versions of inexact inverse
iteration for the calculation of an algebraically simple eigenvalue. In particular, if the
inexact solves are carried out with a tolerance chosen proportional to the eigenvalue
residual then quadratic convergence is achieved. We also show how modifying the
right hand side in inverse iteration still provides a convergent method, but the rate of
convergence will be quadratic only under certain conditions on the right hand side. We
discuss the implications of this for the preconditioned iterative solution of the linear
systems. Finally we introduce a new ILU preconditioner which is a simple modification
to the usual preconditioner, but which has advantages both for the standard form
of inverse iteration and for the version with a modified right hand side. Numerical
examples are given to illustrate the theoretical results.

AMS subject classification (2000): 65F15, 65F10.
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1 Introduction.

This paper is about inexact inverse iteration applied to the generalised non-
symmetric eigenvalue problem Ax = λMx, where A and M are large, sparse
(possibly complex) matrices.
Many methods for the iterative calculation of eigenvalues of Ax = λMx in-
volve the repeated solution of the shifted linear system

(A− σM)y =Mx,(1.1)

for some σ ∈ C, with the simplest iterative method being inverse iteration. We
assume that it is impracticable to factorise the matrices, due to excessive memory
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requirements, and so to solve the large, sparse, linear shifted systems iterative
methods are used. These require only matrix-vector products and can therefore
exploit the sparse structure of the matrices.

Previous studies on inexact inverse iteration applied to the standard symmetric
eigenvalue problem include the very early paper [16] and the more recent [20, 19]
and [2]. In these papers Rayleigh quotient shifts were used in the inverse iteration
algorithm and various aspects are discussed, for example, the convergence theory
and the implementation and performance of the iterative solver. For incomplete
Cholesky preconditioned iterative solves, [19] introduced the idea of modifying
the right hand side to improve the performance of the iterative solver. Also in [19]
it was noted that Rayleigh quotient iteration can be related to Newton’s method
on a Grassmann manifold (see [8]). Other related papers on the topic of inexact
eigenvalue solvers include [12] and [14]. For inexact inverse iteration applied to
the nonsymmetric eigenvalue problem we refer to [13] and [9] for a fixed shift,
and [4] for a variable shift strategy. In many of these papers the analysis is
based on eigenvector expansions and convergence is determined by looking at a
(generalised) tangent of the error in the desired eigendirection. Often, in such
accounts the norm of a matrix of all the eigenvectors arises in the convergence
analysis and in error bounds, which is a drawback to the approach.
In this paper a completely different and novel approach to the analysis for
variable shifts is used which provides a much simpler analysis, and also suggests
a way of analysing preconditioned iterative solves when the right hand side is
modified as in [19]. We show that inexact inverse iteration is a modified Newton
method and hence obtain a convergence analysis for inexact inverse iteration
applied to the calculation of an algebraically simple eigenvalue. In addition, the
approach here suggests a “tuning” strategy for the preconditioner that works
well in numerical examples.
The plan of the paper is as follows. Section 2 contains a review of some known
results about Newton’s method and inverse iteration. The main theory of the
paper is in Section 3 where the convergence results for inexact inverse iteration
are obtained. In Section 4 we discuss how to maintain quadratic convergence for
a version of inexact inverse iteration where the right-hand side is modified to
improve the performance of a preconditioned iterative solver. We illustrate this
theory by introducing a “tuned” ILU preconditioner which is a simple rank one
modification of the standard preconditioner. This tuned preconditioner turns
out to have a significantly improved performance over the standard ILU precon-
ditioner in two different numerical examples. Section 5 provides a summary of
the main results in the paper.

Throughout this paper we use ‖z‖ = ‖z‖∞ unless otherwise stated.

2 Inverse iteration.

It is well-known that inverse iteration can be formulated as a Newton method.
This was first done in [22] but was then rediscovered in [15] and [21]. Here we
revise the convergence theory briefly for a generalised eigenvalue problem.



CONVERGENCE RATES FOR INEXACT INVERSE ITERATION 29

Let A andM be real or complex n×n matrices, and consider the generalised
eigenvalue problem

Ax = λMx, λ ∈ C, x ∈ Cn.(2.1)

Assume that (x1, λ1) is an algebraically simple eigenpair of (2.1) with u
H
1 the

corresponding left eigenvector, so that,

uH1 Mx1 �= 0.(2.2)

Also, for some non-zero constant vector c ∈ Cn assume the normalisation

cH x1 = 1.(2.3)

One version of inverse iteration is given by Algorithm 2.1.

Algorithm 2.1 (Inverse iteration). Given λ(0) and x(0) with cHx(0) = 1. For
i = 0, 1, 2, . . .

(1) Solve (A− λ(i)M)y(i) =Mx(i),

(2) Set ∆λ(i) = 1
cHy(i)

; λ(i+1) = λ(i) +∆λ(i),

(3) Update x(i+1) = ∆λ(i)y(i),
(4) Evaluate r(i+1) = (A− λ(i+1)M)x(i+1),
(5) Test for convergence.

Note that from steps (2) and (3) of Algorithm 2.1, cHx(i+1) = 1 and hence
cH∆x(i) = 0, where ∆x(i) = x(i+1) − x(i).
Now, let us introduce the nonlinear system F(z) = 0 where, for z := (x, λ)T ,

F(z) =

[
(A− λM)x
cHx− 1

]
.(2.4)

Then the steps in Algorithm 2.1 may be rewritten in the following block matrix
form [

(A− λ(i)M) −Mx(i)

cH 0

][
∆x(i)

∆λ(i)

]
=

[
−(A− λ(i)M)x(i)

0

]
,(2.5)

with [
x(i+1)

λ(i+1)

]
=

[
x(i) +∆x(i)

λ(i) +∆λ(i)

]
.(2.6)

Equations (2.5) and (2.6) are merely Newton’s method applied to (2.4), namely,

J(z(i))∆z(i) = −F(z(i)), z(i+1) = z(i) +∆z(i),(2.7)

where J(z(i)) denotes the Jacobian

J(z(i)) =

[
(A− λ(i)M) −Mx(i)

cH 0

]
.(2.8)
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Lemma 2.1. If z1 = (x1, λ1)
T is an algebraically simple eigenpair of (2.1)

then under (2.3), J(z1) is nonsingular.

Proof. Lemma 2.8 in [10] shows that if Rank(A − λ1M) = n − 1, and if
(2.2), (2.3) hold, then J(z1) is nonsingular. (Note that one can obtain explicit
bounds on the norm of J(z1)

−1 as discussed in [1] and [18], where the bounds
depend on |uH1 Mx1|

−1.)

Standard convergence theory for Newton’s method (see, for example, [6]) ap-
plied to (2.7) provides the following well-known convergence result.

Corollary 2.2. If z1 = (x1, λ1) is an algebraically simple eigenpair of (2.1)
and if (2.3) holds, then Algorithm 2.1 converges quadratically for a close enough
starting guess.

This quadratic rate of convergence is observed in practice (see, for example,
the numerical results given by the solid line in Figure 3.1).
For (x(i), λ(i))T the eigenvalue residual

r(i) = (A− λ(i)M)x(i),(2.9)

is calculated in step (4) of Algorithm 2.1. Since cHx(i) = 1, ∀i, we have ‖r(i)‖ =
‖F(z(i))‖. Now with z1 = (x1, λ1) denoting the root of F(z) = 0,

‖F(z(i))‖ = ‖F(z(i))− F(z1)‖ ≤ C1‖z
(i) − z1‖,

holds, where C1 is a bound on the norm of J(z) in some ball centered on z1.
Hence

‖r(i)‖ ≤ C1‖z
(i) − z1‖.(2.10)

It is important to note that, in practice, to stop a Newton iteration one would
typically use a relative stopping condition, see, for example, [11, Section 5.2]
or [7, Chapter 2] where a clear scaling-invariant account of Newton’s method is
given.
In this section we have shown how exact inverse iteration can be regarded as
a Newton method. In the next section we show how inexact inverse iteration
can be regarded as a modified Newton method and hence derive corresponding
convergence results.

3 Inexact inverse iteration & modified Newton’s method.

Let us now consider a version of inexact inverse iteration that introduces two
changes from Algorithm 2.1. First, as the name implies, we solve the linear
systems iteratively to a given residual tolerance (and hence the linear systems
are solved ‘inexactly’). Second, instead of (1.1) we consider the linear system

(A− σM)y = Z(λ)x,(3.1)
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where Z(λ) is a complex n× n matrix depending on λ. If Z(λ) =M, then (3.1)
reduces to (1.1). However, in Section 4 we consider the system (A−λ(i)M)y(i) =
1
λ(i)
Px(i), where P is a preconditioner for A − λ(i)M, and so we consider the

convergence theory for the more general form given by (3.1). Thus we discuss
the following algorithm.

Algorithm 3.1 (Inexact inverse iteration). Given λ(0) and x(0) with cHx(0)

= 1. For i = 0, 1, 2, . . .

(1) Choose τ (i),
(2) Solve (A− λ(i)M)y(i) = Z(λ(i))x(i) inexactly, that is,

‖(A− λ(i)M)y(i) − Z(λ(i))x(i)‖ ≤ τ (i)‖Z(λ(i))x(i)‖,

(3) Set ∆λ(i) = 1
cHy(i)

; λ(i+1) = λ(i) +∆λ(i),

(4) Update x(i+1) = ∆λ(i)y(i),
(5) Evaluate r(i+1) = (A− λ(i+1)M)x(i+1),
(6) Test for convergence.

To analyse this algorithm let us introduce the linear system residual

res(i) := (A− λ(i)M)y(i) − Z(λ(i))x(i),(3.2)

which should not be confused with the eigenvalue residual r(i) defined by (2.9).
From step (2) in Algorithm 3.1 we know

‖res(i)‖ ≤ τ (i)‖Z(λ(i))x(i)‖.(3.3)

Now, using x(i+1) = ∆λ(i)y(i) from step (4) of Algorithm 3.1, we may write (3.2)
as

(A− λ(i)M)x(i+1) = ∆λ(i)(Z(λ(i))x(i) + res(i)),

or, equivalently,

(A− λ(i)M)∆x(i) −∆λ(i)(Z(λ(i))x(i) + res(i)) = −(A− λ(i)M)x(i).

This equation along with cH∆x(i) = 0 gives

[
A− λ(i)M −(Z(λ(i))x(i) + res(i))
cH 0

] [
∆x(i)

∆λ(i)

]
=

[
−(A− λ(i)M)x(i)

0

]
,(3.4)

which, with (2.6), we can write as

J̃(z(i))∆z(i) = −F(z(i)), z(i+1) = z(i) +∆z(i),(3.5)

where z(i) = (x(i), λ(i))T and J̃ is defined by

J̃(z(i)) =

[
A− λ(i)M −(Z(λ(i))x(i) + res(i))
cH 0

]
.(3.6)
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Clearly (3.5) is a modified Newton method for F(z) = 0 with J̃(z(i)) being an
approximation to the exact Jacobian J(z(i)) given by (2.8). Hence the conver-
gence of the inexact inverse iteration method given by Algorithm 3.1 can be
proved using the convergence theory of modified Newton’s method.

Theorem 3.1 (Convergence of inexact inverse iteration). Let z1 = (x1, λ1)
T

be an algebraically simple eigenpair of (2.1) satisfying (2.3). Since J(z1) defined
by (2.8) is nonsingular we assume ‖J(z1)−1‖ ≤ β (see Lemma 2.1). For some
τmax, r > 0, consider the use of Algorithm 3.1 with τ

(i) ≤ τmax, ∀i, with
starting value z(0) = (x(0), λ(0))T ∈ B = B(z1, r). If r, τmax and Z(λ) are such
that

β{|λ1 − λ|‖M‖+ ‖Z(λ)x−Mx1‖+ τmax‖Z(λ)x‖} =: δ < 1(3.7)

for z = (x, λ) ∈ B, and if

{
β‖M‖r

1− δ
+ δ

}
=: α < 1,(3.8)

then with e(i) := z(i) − z1,

a) Algorithm 3.1 converges linearly to z1 = (x1, λ1)
T with

‖z(i+1) − z1‖ ≤ α‖z
(i) − z1‖,

b) e(i+1) satisfies

‖e(i+1)‖ ≤
β

1− δ
K(i)‖e(i)‖,(3.9)

where K(i) = ‖M‖‖e(i)‖+ ‖Mx(i) − Z(λ(i))x(i)‖+ ‖res(i)‖, and,
c) if, in addition, τ (i) in Algorithm 3.1 satisfies

τ (i) ≤ C2‖r
(i)‖,(3.10)

for some constant C2 independent of i with r
(i) given by (2.9), and

‖Z(λ(i))x(i) −Mx(i)‖ ≤ C3‖e
(i)‖,(3.11)

for some constant C3 independent of i, then Algorithm 3.1 converges quad-
ratically.

Proof. The proof consists of verifying the conditions of Theorem A.1 on
the convergence of modified Newton’s method (given in the Appendix) for F
defined by (2.4). First note that γ, the Lipschitz constant of J, can be taken
as 2‖M‖. Next, by reducing r and τmax and taking Z(λ) close enough to M,
conditions (3.7) and (3.8) can always be made to hold. Thus conditions (A.1)
and (A.4) of Theorem A.1 hold and so the linear convergence of Algorithm 3.1
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(part (a)) is proved. Part (b) of Theorem 3.1 follows immediately from part (b)
in Theorem A.1. Under (3.10) and (3.11) (and recalling (2.10)),

‖J(z(i))− J̃(z(i))‖ ≤ ‖Mx(i) − Z(λ(i))x(i)‖+ ‖res(i)‖ ≤ C4‖e
(i)‖,(3.12)

for some constant C4 independent of i. The quadratic convergence follows from
case (c) in Theorem A.1.

We see from (3.9) that the possibility of achieving quadratic convergence in
Algorithm 3.1 is determined by the size of ‖Mx(i)−Z(λ(i))x(i)‖ and how ‖res(i)‖
is controlled. However if τ (i) is held fixed, or if (3.11) does not hold, then lin-
ear convergence is all that can be expected. We now discuss the natural case
Z(λ(i)) =M.

3.1 Standard inexact inverse iteration.

In this subsection we consider the standard form of inexact inverse iteration
by making the choice Z(λ(i)) =M. In this context we discuss two choices of τ (i)

in Algorithm 3.1, namely, either τ (i) is chosen to decrease or τ (i) is held fixed
(cases (a) and (b) respectively in the following corollary).

Corollary 3.2. Assume Z(λ(i)) = M in Algorithm 3.1 and let the condi-
tions of Theorem 3.1 hold. Then we obtain the following rates of convergence,
depending on the tolerance τ (i).

a) Decreasing tolerance. If τ (i) ≤ C2‖r(i)‖ in step (1) of Algorithm 3.1 then,
for a close enough starting guess, Algorithm 3.1 achieves quadratic conver-
gence, which is equal to the rate achieved by Algorithm 2.1 for exact inverse
iteration.

b) Fixed tolerance. If τ (i) = τ in step (1) of Algorithm 3.1, where τ is fixed
but small enough, then, for a close enough starting guess, Algorithm 3.1
converges linearly.

Proof. For Z(λ(i)) =M, condition (3.11) in Theorem 3.1 is obviously sat-
isfied with C3 = 0. In the case of a decreasing tolerance (a), condition (3.10)
of Theorem 3.1 is assumed and therefore quadratic convergence follows immedi-
ately from Theorem 3.1. In the case of a fixed tolerance (b), the bound in (3.3)
becomes

‖res(i)‖ ≤ τ‖Mx(i)‖,(3.13)

where τ is fixed. Then the K(i) term in (3.9) does not decrease with i and hence
only linear convergence can be proved.

We now present some numerical results to illustrate the theoretical results
from Corollary 3.2, and also provide a comparison with Algorithm 2.1 (exact
solves).
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3.2 Numerical example.

Here we present numerical results to illustrate the convergence behaviour of
inexact inverse iteration for two different choices of the solve tolerance in step
(2) of Algorithm 3.1.

Example 3.1. Consider the standard eigenvalue problem Ax = λx where A
is the finite difference discretisation (central differences) on a 32× 32 grid of the
following eigenvalue problem of the convection-diffusion operator

−∆u+ 5ux + 5uy = λu on (0, 1)2,(3.14)

with homogeneous Dirichlet boundary conditions. Here Z(λ(i)) = M = I. This
eigenvalue problem is also discussed in [9]. Consider finding the smallest eigen-
value (λ1 ≈ 32.18560954) by Algorithm 2.1 and by Algorithm 3.1 with both de-
creasing and fixed tolerances. We take an initial vector x(0) with cos(x1,x

(0)) ≈
0.84 and λ(0) = 20. We use GMRES as the inexact solver: for the inexact solves
with fixed tolerance we take τ (i) = τ = 0.3 (case (b) in Corollary 3.2) and for
the inexact solves with decreasing tolerance (case (a) in Corollary 3.2) we take

τ (i) = min{τ, ‖r(i)‖}, with τ = 0.3,(3.15)

where the eigenvalue residual ‖r(i)‖ is given by (2.9). As an overall stopping
condition we use the norm of the relative eigenvalue residual, so that, once

∥∥∥∥ r
(i)

λ(i)

∥∥∥∥ < 10−10

is satisfied, the computation stops. Note that the computations use ‖ · ‖ = ‖ · ‖2,
since this is the standard norm used in GMRES.

The results are illustrated in Figure 3.1 which gives logarithmic plots for the
norm of the error at step i+ 1 against the norm of the error at step i. The dot-
ted outer lines indicate the slopes expected for linear and quadratic convergence.
Clearly, exact inverse iteration specified by the solid line yields quadratic conver-
gence as expected, since it corresponds to Newton’s method (see Section 2). Also
inexact inverse iteration with decreasing tolerance indicated by the dash-dotted
line gives quadratic convergence as expected from Corollary 3.2, part (a). For
inexact inverse iteration with fixed tolerance shown by the dashed line we get
only linear convergence as predicted in Corollary 3.2, part (b).
If the convection term in the problem is increased in (3.14), a closer start-
ing guess is required since the spectrum of the convection-diffusion operator
becomes more bunched, with complex eigenvalues moving close to the desired
eigenvalue λ1.

4 Preconditioned iterative solvers.

In this section we consider the preconditioned iterative solution of the shifted
linear systems in inverse iteration. First we show how a modified right hand
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Figure 3.1: Numerical results for Example 3.1. The slopes of the solid, dashed and
dashed-dotted lines indicate the rates of convergence achieved. The dotted lines indicate
the slopes expected for linear and quadratic convergence.

side as in (3.1) can arise, and then we show how quadratic convergence in Al-
gorithm 3.1 can be maintained by a simple rank one update to the standard
preconditioner. Our motivation for choosing a different right hand side arises
in the consideration of the performance of the iterative solver used in inexact
inverse iteration. It was noted in [19] for the standard symmetric eigenvalue
problem that it was advantageous to alter the right hand side in inverse iter-
ation to reduce the number of iterations used by a Krylov solver. We consider
this idea applied to the nonsymmetric, generalised case.

The obvious way to implement the (left) preconditioned solution of the shifted
system (A− λ(i)M)y(i) =Mx(i), with P a suitable preconditioner, is

P−1(A− λ(i)M)y(i) = P−1Mx(i).(4.1)

However, the idea in [19] is to alter the right hand side of (4.1) to produce
a linear system whose solution requires fewer steps of GMRES. For the nonsym-
metric eigenvalue problem we argue heuristically as follows. If (x(i), λ(i)) is close
enough to (x1, λ1), then Ax

(i) ≈ λ(i)Mx(i) and so the right hand side of (4.1),
namely P−1Mx(i), can be approximated by (assuming λ(i) �= 0) P−1Mx(i) ≈
1
λ(i)
P−1Ax(i), and if, in addition, P−1A ≈ I then P−1Mx(i) ≈ 1

λ(i)
x(i).

Hence, if the preconditioner for A− λ(i)M is chosen to approximate A, then
it is reasonable to replace (4.1) by

P−1(A− λ(i)M)y(i) =
1

λ(i)
x(i).(4.2)
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Hence, the right hand side vector is roughly in the direction of the approximate
null vector of the iteration matrix P−1(A−λ(i)M) and this helps to reduce costs
in GMRES.
A detailed account of the costs of Krylov solvers applied to shifted linear
systems in inverse iteration is discussed in [2] (for symmetric problems) and
in [3] (for nonsymmetric problems). From the viewpoint of outer convergence
theory (4.2) reduces to the equation

(A− λ(i)M)y(i) =
1

λ(i)
Px(i),(4.3)

that is, the equation analysed in Section 3 with Z(λ(i)) = 1
λ(i)
P. Due to the factor

1
λ(i)
we introduce an additional assumption that for some CL, with CL > 0 and

independent of i,

|λ(i)| ≥ CL, ∀i.(4.4)

The following corollary provides the key theoretical result, where we allow the
preconditioner to depend on i.

Corollary 4.1. Let P(i) be a preconditioner for A − λ(i)M, where P(i)

depends on i. Assume that the conditions of Theorem 3.1 are satisfied and that
(4.4) holds. Let τ (i) be chosen as in (3.10). If Z(λ(i)) is chosen as

Z(λ(i))x(i) =
1

λ(i)
P(i)x(i),(4.5)

and P(i) satisfies

P(i)x(i) = Ax(i)(4.6)

then Algorithm 3.1 exhibits quadratic convergence.

Proof. Using (4.6) we can write (4.3) as

(A− λ(i)M)y(i) =
1

λ(i)
Ax(i).

Theorem 3.1 can now be applied with Z(λ(i)) =
1

λ(i)
A. We have that

‖Z(λ(i))x(i) −Mx(i)‖ =

∥∥∥∥ 1λ(i) (Ax
(i) − λ(i)Mx(i))

∥∥∥∥ ,(4.7)

and so, using (2.9), (2.10) and (4.4),

‖Z(λ(i))x(i) −Mx(i)‖ ≤
1

|λ(i)|
C1‖e

(i)‖ ≤ C3‖e
(i)‖,

where C3 :=
C1
CL
. Hence (3.10) and (3.11) in Theorem 3.1 hold, proving that the

convergence is quadratic.
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Thus we see from (4.5) and (4.6) that if the right hand side of (4.3) can be
made to approximate 1

λ(i)
Ax(i) then there is the possibility of quadratic outer

convergence, with the added advantage of an efficient solution procedure for the
shifted linear systems. In the following section we explain how it is possible to
satisfy (4.6) and hence to achieve this quadratic convergence rate using an ILU
preconditioner.

4.1 Incomplete LU preconditioning and tuning.

In this subsection we consider the use of an incomplete LU factorisation of A
as a preconditioner for A−λ(i)M. This is common in applications involving dis-
cretised PDEs, where there is a well-established technology for obtaining a good
preconditioner for A and where M usually represents a discretised lower order
operator.We shall explain how condition (4.6) may be achieved and implemented
and then present two numerical examples.
Assume we have the following incomplete factorisation

A = LU+E,(4.8)

where L is a lower triangular matrix and U is an upper triangular matrix. The
matrix E is the error matrix. We take

PS := LU,(4.9)

as the preconditioner for A−λ(i)M. We shall call this the “standard” precondi-
tioner. However, there is no reason why PS should satisfy (4.6), but we now show
how a simple modification of PS can ensure that (4.6) is achieved. We define

f (i) := Ax(i) −PSx
(i)(4.10)

for a given x(i) and introduce the preconditioner

P
(i) := PS + f

(i)cH ,(4.11)

where cHx(i) = 1, with c being the normalising vector in Algorithm 3.1. Clearly,
by construction,

P
(i)x(i) = Ax(i)(4.12)

and (4.6) holds for P(i) = P(i). We say that P(i) is “tuned” in the sense that,
as well being a preconditioner in the usual sense, P(i) agrees with A in the
direction x(i), the current estimate for x1. Note that P

(i) is a rank-one change of
PS , and so, using the Sherman-Morrison formula (see, for example, [5, p. 95]),

the additional cost of calculating the action of P(i)
−1
compared with the action

of P−1S for a given i, is merely one forward and one back substitution. Therefore,
in Algorithm 3.1, step (2), we solve

(A− λ(i)M)y(i) =
1

λ(i)
P
(i)x(i)(4.13)



38 M. A. FREITAG AND A. SPENCE

so that Z(λ(i)) = 1
λ(i)
P(i), with P(i) given by (4.11), and Algorithm 3.1 should

achieve quadratic convergence. Note that (4.13) is implemented as

P
(i)−1(A− λ(i)M)y(i) =

1

λ(i)
x(i).(4.14)

We now give two numerical examples to illustrate Corollary 4.1 and also to
compare the performance of P(i) and PS as preconditioners for the standard
shifted system (A− λ(i)M)y(i) =Mx(i).

Example 4.1. We consider the same convection-diffusion operator with
Dirichlet boundary conditions as in Example 3.1, but a generalised eigenvalue
problem Ax = λMx is derived by discretising (3.14) using a Galerkin-FEM on
regular triangular elements with piecewise linear functions. We use a 32 × 32
grid leading to 961 degrees of freedom. Again, we seek the smallest eigenvalue,
which in this case is given by λ1 ≈ 32.15825765. As an initial guess we take
a vector x(0) with cos(x1,x

(0)) ≈ 0.79 and λ(0) = 20. As solver we take precon-
ditioned GMRES with either the usual ILU preconditioner, PS given by (4.9),
or the tuned preconditioner, P(i) given by (4.11). We compare the costs of the
following three methods.

a) “P(i)/modified-rhs”: the tuned preconditioner is applied to the inverse iter-
ation system with a modified right hand side, namely,

P
(i)−1(A− λ(i)M)y(i) =

1

λ(i)
x(i), P(i) = LU+ f (i)cH ,(4.15)

where U and L are given by the ILU decomposition, and with f (i) defined
by (4.10).

b) “P(i)/standard-rhs”: the tuned preconditioner is applied to the standard
inverse iteration system, namely,

P
(i)−1(A− λ(i)M)y(i) = P(i)

−1
Mx(i), P(i) = LU+ f (i)cH .(4.16)

c) “PS/standard-rhs”: the usual ILU preconditioner is applied to the standard
inverse iteration system, namely,

P−1S (A− λ
(i)M)y(i) = P−1S Mx

(i), PS = LU.(4.17)

In each case we use the decreasing tolerance τ (i) = min{τ, ‖r(i)‖} with τ = 0.5.
So all three methods have quadratic convergence using Corollaries 3.2 and 4.1.

The iteration stops once the relative residual satisfies ‖ r
(i)

λ(i)
‖ < 10−14. As in

Example 3.1, ‖ · ‖ = ‖ · ‖2.
In Figure 4.1 we give logarithmic plots of the errors obtained from method
“P(i)/modified-rhs” for two different drop tolerances. The dotted lines indicate
the slopes expected for linear and quadratic convergence. As predicted in Corol-
lary 4.1 we achieve quadratic convergence. Table 4.1 shows the number of inner
iterations for the inexact solves of the three methods. We see that for both drop
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Figure 4.1: Numerical results for Example 4.1. The quadratic outer convergence rate
for method “P(i)/modified-rhs” with different drop tolerances is readily observed.

Table 4.1: Iteration numbers for Example 4.1. Total number of iterations and number
of inner iterations for the three methods using (4.15), (4.16) or (4.17) with decreasing
tolerance. In each method the drop tolerances were 10−2 and 10−4.

“P(i)/modified-rhs” “P(i)/standard-rhs” “PS/standard-rhs”

Outer It. 10−2 10−4 10−2 10−4 10−2 10−4

1 1 1 1 1 1 1
2 3 3 7 5 9 5
3 3 3 11 7 13 8
4 6 5 13 8 18 13
5 8 7 16 8 28 18
6 13 13
7 18

total 52 32 48 29 69 45

tolerances the tuned preconditioner applied to the standard inverse iteration for-
mulation, method “P(i)/standard-rhs”, requires fewer inner iterations than the
other two methods. In particular, comparing the results for “P(i)/standard-rhs”
with “PS/standard-rhs” we see that the tuned preconditioner is significantly
better than the usual ILU preconditioner. Method “P(i)/standard-rhs” requires
fewer outer iterations than “P(i)/modified-rhs”, which may be explained by con-
sidering the constants in the convergence theory. In particular, method (a) is
sensitive to the starting guess whereas methods (b) and (c) are more robust
with respect to the starting vector. For example if we choose a starting vectors
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with cos (x1,x
(0)) ≈ 0.47 method (a) fails to work, whereas methods (b) and (c)

converge as expected, with (b) again proving superior to (c).
Hence, if the preconditioner is tuned as explained in this section, it appears
to be best to apply it on the standard system (A − λ(i)M)y(i) =Mx(i) rather
than consider modifying the right hand side. This gives the best result in terms
of the total number of iterations and the convergence rate.
Next we present an example arising in reactor design (see [17] for details).

Example 4.2. The standard model to describe the neutron balance in a 2D
model of a nuclear reactor is given by the two-group neutron equations

−div(K1∇u1) + (Σa,1 +Σs)u1 =
1

µ1
(Σf,1u1 +Σf,2u2)

−div(K2∇u2) + Σa,2u1 − Σsu2 = 0,

where u1 and u2 are defined on [0, 1] × [0, 1] and represent the density distri-
butions of fast and thermic neutrons respectively. K1 and K2 are diffusion co-
efficients and Σa,1,Σa,2,Σs,Σf,1 and Σf,2 measure interaction probabilities and
take different piecewise constant values in different regions of the reactor, which
for this example are given in Figure 4.2 and Table 4.2. The largest µ1 such that
1/µ1 is an eigenvalue of the system equation is a measure for the criticality of
a reactor with µ1 < 1 representing subcriticality and µ1 > 1 representing super-
criticality. The aim is to maintain the reactor in the critical phase with µ1 = 1.

Figure 4.2: Nuclear reactor problem geometry.

Table 4.2: Data for the nuclear reactor problem.

K1 K2 Σa,1 Σa,12 Σs Σf,1 Σf,2

Region 1 2.939e-5 1.306e-5 0.0089 0.109 0.0 0.0 0.0079
Region 2 4.245e-5 1.306e-5 0.0105 0.025 0.0 0.0 0.0222
Region 3 4.359e-5 1.394e-5 0.0092 0.093 0.0066 0.140 0.0156
Region 4 4.395e-5 1.355e-5 0.0091 0.083 0.0057 0.109 0.0159
Region 5 4.398e-5 1.355e-5 0.0097 0.098 0.0066 0.124 0.0151
Region 6 4.415e-5 1.345e-5 0.0093 0.085 0.0057 0.107 0.0157
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The boundary conditions for g = 1, 2 are

ug = 0 if x1 = 0 or x2 = 0,

Kg
∂ug

∂xi
= 0 if xi = 1, for i = 1, 2.

Discretising the problem using a finite difference approximation on a h×h grid,
where h = 1/m we obtain a 2m2 × 2m2 discrete eigenproblem Au = λMu,
where A andM are both nonsymmetric andM is singular. We seek the smallest
eigenvalue λ1(= 1/µ1), which determines the criticality of the reactor. We choose
m = 32, which leads to a system of size n = 2048. For initial conditions, we take
λ(0) = 1, from physical considerations, and u(0) = [1, . . . , 1]T /

√
n. In fact, the

exact eigenvalue is given by λ1 = 0.9707 and cos(u1,u
(0)) ≈ 0.44. We compare

methods (a), (b) and (c) as in Example 4.1. In each case the iteration stops once

the relative residual satisfies ‖ r
(i)

λ(i)
‖ < 10−11.

Table 4.3 shows the results obtained by methods (a), (b) and (c). Again, we
use an ILU preconditioner with, in this case, drop tolerances of 0.1 and 0.01.
We observe that the use of the tuned preconditioner applied to the standard
formulation (see the middle columns in Table 4.3) provides the best results with
respect to overall costs. Also, the standard preconditioner applied to the standard
formulation (see the right hand columns) performs least well. These numerical
results are consistent with those obtained in the previous example and confirm
the usefulness and applicability of the tuned preconditioner.

Table 4.3: Iteration numbers for Example 4.2. Total number of iterations and number
of inner iterations for the three methods using (4.15), (4.16) or (4.17) with decreasing
tolerance. In each method the drop tolerances were 10−1 and 10−2.

“P(i)/modified-rhs” “P(i)/standard-rhs” “PS/standard-rhs”

Outer It. 10−1 10−2 10−1 10−2 10−1 10−2

1 6 7 4 4 1 4
2 4 10 2 11 8 11
3 12 21 5 22 3 27
4 22 29 27 27 5 37
5 43 38 26 45
6 65 59 38
7 55
8 76

total 152 67 135 64 212 124

5 Conclusions.

We have analysed inexact inverse iteration for a generalised eigenvalue prob-
lem and have shown that for an algebraically simple eigenvalue it is a modified
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Newton method. Using the convergence theory of the modified Newton method
we obtained convergence rates for inexact solves with either fixed or decreasing
tolerances. This approach is much simpler than previous approaches involving
eigenvector expansions. Using the same tool, we also analysed preconditioned
iterative solves. In situations where the right hand side in inexact inverse iter-
ation is modified we have shown how an ILU preconditioner may be tuned to
recover quadratic convergence. Additionally, we have given two examples which
indicate that the application of the tuned preconditioner may be advantageous
when applied to the standard inverse iteration formulation.
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A Modified Newton theory.

Here we state a convergence theorem for modified Newton’s method (see for
example [6]) that is used to prove Theorem 3.1.

Theorem A.1. Assume F : Cn −→ Cn and let F(z∗) = 0. For some r > 0,
define B := B(z∗, r) and assume J(z) ∈ LipγB, where J(z) is the Jacobian of

F(z). Further, assume ‖J(z∗)−1‖ ≤ β. For each z let J̃(z) be a complex n × n
matrix satisfying, for some δ, 0 ≤ δ < 1,

‖J(z∗)−1(J̃(z) − J(z∗))‖ ≤ δ.(A.1)

Then J̃(z)−1 exists in B and ‖J̃(z)−1‖ ≤ β
1− δ . Next consider the solution of

F(z) = 0, z ∈ Cn(A.2)

using modified Newton’s method:

z(i+1) = z(i) − J̃(z(i))−1F(z(i)), z(0) ∈ B.(A.3)

If {
βγr

2(1− δ)
+ δ

}
=: α < 1, ∀z ∈ B(A.4)

then, with e(i) := z(i) − z∗,

a) modified Newton’s method converges linearly to z∗,
b) we have

‖e(i+1)‖ ≤
β

(1− δ)

{γ
2
‖e(i)‖+ ‖J(z(i))− J̃(z(i))‖

}
‖e(i)‖,

and
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c) if

‖(J(z(i))− J̃(z(i)))e(i)‖ ≤ C‖e(i)‖2

for some constant C, then modified Newton’s method converges quadrati-
cally.
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