数学与系统科学研究院

计算数学所学术报告会

 

报告人:       Prof.Michael Holst

                      

University of California, San Diego

 

报告题目:

Convergent Adaptive Finite Element Approximation of the Poisson Boltzmann Equation

报告摘要:

  We examine a nonlinear PDE model of two-scale phenomena arising in molecular biophysics. Through use of a two-scale expansion we establish well-posedness and a priori max-norm estimates for the the continuous and discrete problems. We derive a priori and a posteriori estimates for Galerkin approximations, and describe an adaptive algorithm driven by the a posteriori error indicator. We then prove that the adaptive algorithm converges. We finish by illustrating the adaptive algorithm with examples using the Finite Element ToolKit (FETK).


报告时间: 2006年8月16日(周三) 上午10:00--11:00

报告地点:科技综合楼三层311报告厅

          欢迎大家参加!