数学与系统科学研究院
计算数学所学术报告会
报告人: Prof.Michael Holst
报告题目:
Convergent Adaptive Finite Element Approximation of the Poisson Boltzmann Equation
报告摘要:
We examine a nonlinear PDE model of two-scale phenomena arising in molecular biophysics. Through use of a two-scale expansion we establish well-posedness and a priori max-norm estimates for the the continuous and discrete problems. We derive a priori and a posteriori estimates for Galerkin approximations, and describe an adaptive algorithm driven by the a posteriori error indicator. We then prove that the adaptive algorithm converges. We finish by illustrating the adaptive algorithm with examples using the Finite Element ToolKit (FETK).
报告时间: 2006年8月16日(周三) 上午10:00--11:00
报告地点:科技综合楼三层311报告厅
欢迎大家参加!