数学与系统科学研究院 计算数学所学术报告

报告人: Prof. Yinyu Ye

(Stanford University, USA)

报告题目:

Complexity of Unconstrained L_2-L_p Minimization

邀请人: 优化与应用研究中心

报告时间: 2011年9月1日(周四)

上午 9: 00-10: 00

报告地点: 科技综合楼三层 311 计算数学所报告厅

Abstract:

We consider the unconstrained \$L_2\$-\$L_p\$ minimization: find a minimizer of $|Ax-b|^2_2+\lambda |x|^p_p$ for given $A \in \mathbb{R}$ $R^{m\times n}$, \$b\in R^m\$ and parameters \$\lambda>0\$, \$p\in [0,1)\$. This problem has been studied extensively in variable selection and sparse least squares fitting for high dimensional data. Theoretical results show that the minimizers of the \$L_2\$-\$L_p\$ problem have various attractive features due to the concavity and non-Lipschitzian property of the regularization function $\$ in this paper, we show that the L_q-L_p minimization problem is strongly NP-hard for any \$p\in [0,1)\$ and \$q\ge 1\$, including its smoothed version. On the other hand, we show that, by choosing parameters \$(p,\lambda)\$ carefully, a minimizer, global or local, will have certain desired sparsity. We believe that these results provide new theoretical insights to the studies and applications of the concave regularized optimization problems.

欢迎大家参加!