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Abstract： 
The concept of a variational formulation is usually attributed to Johann 
Bernoulli as it is directly linked to the classical Calculus of Variations started by 
Johann and Jacob Bernoulli and later developed by Euler and Lagrange. Indeed, 
mid-way between the minimization problem and the Euler-Lagrange equations, 
we arrive at an integral identity that has to be satisfied for all admissible 
variations, the Principle of Virtual Work. The essence of the principle is the fact 
that the solution is characterized through its action on test functions. In the 
mathematical language, we are dealing with an operator that takes values in the 
dual to the test space. Each of the three formulations: the minimization problem, 
the Euler-Lagrange equations, and the variational formulation may provide a 
starting point for a numerical approximation. 
 
If the minimized functional is represented by a quadratic form, the 
corresponding variational problem is linear. If the quadratic form is positive 
definite (the functional is strictly convex), the minimization and variational 
problems are fully equivalent. This equivalence carries over to the discrete level 
and represents the essence of the Ritz method: solution of the discrete variational 
problem is equivalent to the minimization of discrete energy. This guarantees the 
stability of Finite 
Element (FE) discretization regardless of a mesh being used. The Ritz method 
always delivers the best approximation in the sense of the energy norm. 
 
If we focus on the equivalence of variational formulation and the Euler-Lagrange 
equations (based on integration by parts and Fourier's lemma), we realize that 
variational (weak) formulations can be developed for arbitrary problems 
described by Partial Differential Equations (PDEs). The essence of the Galerkin 
method is then to discretize the variational formulation rather than the PDEs. 
The critical question is whether the Galerkin method will converge beyond the 
``safe scenarios'' provided by the positive definite self-adjoint operators (the Ritz 
setting). 
 
A partial answer has been provided by Mikhlin's theory of asymptotic stability. 
If a positive definite self-adjoint operator is perturbed with a lower order term 
(compact operator), the Galerkin method is asymptotically stable and in fact 
optimal: for fine enough meshes, it will deliver again the best approximation 
error. To this class of problems belong for instance standard vibrations and wave 
propagation problems. The delicate issue is how to determine whether the mesh 
is fine enough to guarantee the stability... 
 
A more fundamental idea was proposed by Petrov in 1959 who suggested using 
different test and trial spaces in the Galerkin formulation. If the trial space 



should be used to guarantee the approximability of the solution, the main role of 
the test space is to provide stability. We arrive at the fundamental Babuska's 
Theorem (1971) and the concept of the inf-sup condition, rooted in Banach 
Closed Range Theorem: if the test space can be selected in such a way that the 
discrete inf-sup condition is satisfied, the method will be stable and converge. 
The famous phrase states: ``discrete stability and approximability imply 
convergence''. 
 
The practical issue how to select the test space remains and, in essence, has been 
the main focus of all FE developments in the last four decades including mixed 
methods, stabilized methods, bubble methods, exact sequences, etc. 
 
 
Jay Gopalakrishnan and I presented a new FE method that automatically 
guarantees discrete stability by means of a Petrov-Galerkin scheme with optimal 
test functions computed on a fly. The main idea is very simple: compute 
(approximately) and use test functions that realize the supremum in the inf-sup 
conditions - the best test functions you can have. Surprise or not, we arrive at a 
minimum residual method (generalized least squares) in which the approximate 
solution delivers again the best approximation error in a special ``energy'' 
(residual) norm. The circle has been closed - we are back to the Ritz setting but 
now for any class of linear problems. 
 
Critical to the practicality of the method is the use of discontinuous test functions 
(``broken'' test spaces) and so-called ultra-weak variational formulation. 
 
 
In collaboration with several colleagues, we managed to develop a general theory 
for linear Partial Differential Equations (PDEs) including singular perturbation 
problems. The methodology has been applied to a variety of usual model 
problems: Poisson equation, convection-diffusion, elasticity, wave propagation: 
acoustics, electromagnetics, elastodynamics, Stokes, beams and shells. It also has 
been formally extended to nonlinear problems and applied to both 
incompressible and compressible Navier-Stokes equations. 
 
 
I will conclude my presentation by flashing a few representative numerical 
results. 
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