数学与系统科学研究院 计算数学所学术报告

<u>报告人</u>: Dr. Olga Mula

(RWTH Aachen University, Germany)

报告题目:

Towards a Fully Scalable Balanced Parareal Method: application to Neutronics

邀请人: 赵旭鹰 博士

<u>报告时间</u>:2015 年 8 月 14 日(周五) 下午 16:00~17:00

<u>报告地点</u>: 科技综合楼三层 311 报告厅

Abstract:

The parareal in time algorithm is a domain decomposition method for the time variable that allows to get additional speed-ups in the numerical solution of time-dependent PDE's when other efficient parallelization methods (like, e.g., spatial domain decomposition) reach saturation. The key ingredients of the algorithm are, first of all, the use of two propagators F and G that, taking an initial value at a given time t respectively provide a fine and coarse approximation to the solution at a later time t + r. Then, if the total interval of time [0, T] is dived into N subintervals [Tn;, Tn+1] ($0 \le n < N$), the algorithm proposes to combine these two propagators in a predictor-correction fashion in order to build a sequence $(x_k^n)_k$ that converges to the fine solution X^n at time Tn as k tends to infinity (and for all $0 \le n \le N$).

In recent years, there has been a considerable effort to improve the performances of the method by reducing the cost of the fine propagator inside the parareal iterations. In [1] for example (see also [2]) it has been proposed to use a domain decomposition algorithm to compute the fine solver and to limit the number of (domain decomposition) iterations during each (parareal) iterations and to resume the iterations by using the previous state as an initial guess in the further domain decomposition iterations. In this spirit, we propose to adapt this strategy to the case where the fine solver presents internal iterations and, in this talk, we will present a scheme in which the internal iterations are truncated and the convergence is obtained across the parareal iterations. After a convergence analysis, we will show some numerical results dealing with the application of the scheme to accelerate the timedependent neutron diffusion equation in a reactor core and we will show how the use of a reduced basis can alleviate the high memory storage demand that the proposed method requires.

References

[1] Y. Maday and G. Turinici, "The Parareal in Time Iterative Solver: a Further Direction to Parallel
Implementation," in Domain Decomposition Methods in Science and Engineering, pp. 441–448,
Springer Berlin Heidelberg, 2005.

[2] R. Guetat, M éthode de parall élisation en temps: Application aux m éthodes de d écomposition de

domaine. PhD thesis, Paris VI, 2012.

欢迎大家参加!