部分论文:
-
B. Wang and X.K. Chang. Pentagram maps on coupled polygons: integrability, geometry and orthogonality. to appear in J. Nonlinear Sci.
-
X.K. Chang and X.M. Chen. On the peakon dynamical system of the second flow in the Camassa--Holm hierarchy. Adv. Math. 459: Paper No. 110000, 51 pages, 2024
-
Q. Tao, X.K Chang, Y. Liu and C.W. Shu. A local discontinuous Galerkin method for the Novikov equation. Math. Comput. DOI: 10.1090/mcom/4018
-
Y.J. Liu, H. Wang, X.K. Chang, X.B. Hu and Y.N. Zhang. Integrable variants of the Toda lattice. J. Nonlinear Sci. 34:Paper No. 98, 34 pages, 2024
-
Y. Pan, X.K. Chang and X.B. Hu. An application of a qd-type discrete hungry Lotka—Volterra equation over finite fields to a decoding problem. Stud. Appl. Math. 151:450--474, 2023
-
X.K. Chang. Hermite--Pade approximations with Pfaffian structures: Novikov peakon equation and integrable lattices. Adv. Math. 402: No. 108338, 45 pages, 2022
-
B. Wang, X.K. Chang, X.B. Hu and S.H. Li. Discrete invariant curve flows, orthogonal polynomials and moving frame. Int. Math. Res. Not. 2021(14): 11050–11092, 2021
-
X.K. Chang, S.H. Li, S. Tsujimoto and G.F. Yu. Two-parameter generalizations of Cauchy bi-orthogonal polynomials and integrable lattices. J. Nonlinear Sci. 31:Paper No.30, 23 pages, 2021
-
X.K. Chang, X.B. Hu, J. Szmigielski and A. Zhedanov. Isospectral flows related to Frobenius-Stickelberger-Thiele polynomials. Commun. Math. Phys. 377, 387–419, 2020
-
X.K. Chang and J. Szmigielski. Lax integrability and the peakon problem for the modified Camassa-Holm equation. Commun. Math. Phys., 358(1): 295–341, 2018
-
X.K. Chang, X.B. Hu, S.H. Li and J.X. Zhao. An application of Pfaffians in multipeakons of the Novikov equation and the finite Toda lattice of BKP type. Adv. Math., 338:1077–1118, 2018
-
X.K. Chang, Y. He, X.B. Hu, and S.H. Li. Partial-skew-orthogonal polynomials and related integrable lattices with Pfaffian tau-functions. Commun. Math. Phys. 364, 1069—1119, 2018
-
X.K. Chang, X.B. Hu, and S.H. Li. Degasperis-Procesi peakon dynamical system and finite Toda lattice of CKP type. Nonlinearity, 31:4746–4775, 2018
-
S. Anco, X.K. Chang and J. Szmigielski. The dynamics of conservative peakons in a family of U(1)-invariant integrable equations of NLS-Hirota type. Stud. Appl. Math. 141:680—713, 2018
-
X.K. Chang, Y. He, X.B. Hu, and S.H. Li. A new integrable convergence acceleration algorithm for computing Brezinski-Durbin-Redivo-Zaglia's sequence transformation via pfaffians. Numer. Algorithm., 78(1): 87–106, 2018
-
X.K. Chang, X.B. Hu and J. Szmigielski. Multipeakons of a two-component modified Camassa-Holm equation and the relation with the finite Kac-van Moerbeke lattice. Adv. Math.,299:1--35, 2016
-
X.K. Chang, X.B. Hu and G. Xin. Hankel determinant solutions to several discrete integrable systems and the Laurent property. SIAM. J. Discrete Math., 29(1): 667--682, 2015
-
X.K. Chang, X.M. Chen and X.B. Hu. A generalized nonisospectral Camassa-Holm equation and its multipeakon solutions. Adv. Math., 263:154-177, 2014
-
J.Q. Sun, X.K. Chang, Y. He and X.B. Hu. An extended multistep Shanks transformation and convergence acceleration algorithm with their convergence and stability analysis. Numer. Math.,125(4):785–809, 2013
-
X.K. Chang and X.B. Hu. A conjecture based on Somos-4 sequence and its extension. Linear Algebra Appl. 436(11):4285–4295, 2012
详细论文目录可见:https://mathscinet.ams.org/mathscinet/search/author.html?mrauthid=978037
https://www.researchgate.net/profile/Xiang-Ke-Chang
出版著作:
-
孙建青,何益,胡星标,常向科. 可积系统与数值算法. 北京:科学出版社,2014
著作章节:
-
X.K. Chang. On finite Toda type lattices and multipeakons of the Camassa-Holm type equations. Nonlinear systems and their remarkable mathematical structures. Vol. 3, Contributions from China. CRC Press, Boca Raton, FL, 2021
-
X.K. Chang and J. Szmigielski. Vibrations of an elastic bar, isospectral deformations, and modified Camassa-Holm equations. Nonlinear systems and their remarkable mathematical structures. Chapter II, Vol. 2, CRC Press, Boca Raton, FL. 2020