2024年12月23日 星期一 登录 EN

学术活动
A monotone discretization for integral fractional Laplacian on bounded Lipschitz domains: pointwise error estimates under H\"{o}lder regularity
首页 - 学术活动
报告人:
Wu Shuonan, Professor, Peking University
邀请人:
Chuchu Chen, Associate Professor
题目:
A monotone discretization for integral fractional Laplacian on bounded Lipschitz domains: pointwise error estimates under H\"{o}lder regularity
时间地点:
9:30-11:30 July 18(Monday), N226
摘要:
We propose a monotone discretization for the integral fractional Laplace equation on bounded Lipschitz domains with the homogenous Dirichlet boundary condition. The method is inspired by a quadrature-based finite difference method of Huang and Oberman, but is defined on unstructured grids in arbitrary dimensions with a more flexible domain for approximating singular integral. The scale of the singular integral domain not only depends on the local grid size, but also on the distance to the boundary, since the H ̈\"{o}lder coefficient of the solution deteriorates as it approaches the boundary. By using a discrete barrier function that also reflects the distance to the boundary, we show optimal pointwise convergence rates in terms of the H ̈older regularity of the data on both quasi-uniform and graded grids. Several numerical examples are provided to illustrate the sharpness of the theoretical results.