he extended finite element method (XFEM) is a powerful technique for solving fracture problems with discontinuities, singularities and localized deformations. However, these enrichment functions increase, drastically, the condition number of the stiffness matrix. In this talk, we construct effective domain decomposition preconditioners for elastic crack propagations based on XFEM. A special domain decomposition strategy is proposed. To accelerate the convergence of the Krylov subspace method, the initial guess is built from the solution of the previous system with a local modification in the crack tip subspace. The efficiency of the proposed algorithms applied to problems with several types of cracks are validated by numerical experiments.
报告人简介:陈星玎,教授,理学博士,现任北京工商大学应用统计系副主任,学科负责人,入选“北京高校青年英才”。2009年于中国科学院数学与系统科学研究院获计算数学专业博士学位,2011年至2013年于北京应用物理与计算数学研究所从事博士后研究工作,2017年至2018年访问美国科罗拉多大学博尔德分校计算机科学系。长期从事线弹性问题高效区域分解方法的研究,主要研究兴趣包括有限元区域分解方法、扩展有限元方法等。在国际学术期刊SIAM J. Sci. Comput.、J. Comput. Phys.、Comput. Method Appl. M.、Commun. Comput. Phys.等发表论文30余篇,先后主持完成国家自然科学基金项目、北京高校青年英才计划项目、北京市教委科技计划面上项目等十余项。