In this talk, we introduce the so-called inverse Lax-Wendroff (ILW) boundary treatment for finite difference approximations on the Cartesian mesh. As the domain boundary may intersect with the grid in arbitrary fashion, then it may require a restricted CFL condition for the sake of stability. Also, the wide stencil of the high order finite difference method also brings challenges in the boundary treatment. We illustrate the idea of ILW numerical boundary treatment with hyperbolic equations and extend it to the convection-diffusion problems. With the careful evaluation on the ghost points, the proposed algorithm is stable and high order by the various numerical tests.
报告人简介:卢键方博士于2010年在中国科学技术大学获得理学学士学位,2016年博士毕业于中国科学技术大学,2016至2018年在北京计算科学研究中心从事博士后研究工作,2018年至2021年在华南师范大学华南数学应用与交叉研究中心担任讲师,2021年8月至今在华南理工大学数学学院担任副教授。其研究兴趣主要包括流体力学的高精度数值算法和非局部扩散方程的间断有限元方法。