2024-11-24 Sunday Sign in CN

Activities
On the role of hyperparameters in stochastic gradient descent
Home - Activities
Reporter:
Bin Shi, Associate Professor, ICMSEC, LSEC, AMSS
Subject:
On the role of hyperparameters in stochastic gradient descent
Time and place:
16:00-17:00 March 31(Thursday)
Abstract:

The learning rate is perhaps the single most important parameter in the training of neural networks and, more broadly, in stochastic (nonconvex) optimization. Accordingly, there are numerous effective, but poorly understood, techniques for tuning the learning rate, including learning rate decay, which starts with a large initial learning rate that is gradually decreased. (1) First, we present a general theoretical analysis of the effect of the learning rate in stochastic gradient descent (SGD). Our analysis is based on the use of a learning-rate-dependent stochastic differential equation (lr-dependent SDE) that serves as a surrogate for SGD. For a broad class of objective functions, we establish a linear rate of convergence for this continuous-time formulation of SGD, highlighting the fundamental importance of the learning rate in SGD, and contrasting to gradient descent and stochastic gradient Langevin dynamics. Moreover, we obtain an explicit expression for the optimal linear rate by analyzing the spectrum of the Witten-Laplacian, a special case of the Schrödinger operator associated with the lr-dependent SDE. Strikingly, this expression clearly reveals the dependence of the linear convergence rate on the learning rate -- the linear rate decreases rapidly to zero as the learning rate tends to zero for a broad class of nonconvex functions, whereas it stays constant for strongly convex functions. Based on this sharp distinction between nonconvex and convex problems, we provide a mathematical interpretation of the benefits of using learning rate decay for nonconvex optimization. (2) Then, we continue to present the theoretical analysis for stochastic gradient descent with momentum (SGD with momentum). Differently, for SGD with momentum, we demonstrate it is the two hyperparameters together, the learning rate and the momentum coefficient, that play the significant role for the linear rate of convergence in non-convex optimization. Our analysis is based on the use of a hyperparameters-dependent stochastic differential equation (hp-dependent SDE) that serves as a continuous surrogate for SGD with momentum. Similarly, we establish the linear convergence for the continuous-time formulation of SGD with momentum and obtain an explicit expression for the optimal linear rate by analyzing the spectrum of the Kramers-Fokker-Planck operator. By comparison, we demonstrate how the optimal linear rate of convergence and the final gap for SGD only about the learning rate varies with the momentum coefficient increasing from zero to one when the momentum is introduced. Then, we propose a mathematical interpretation why the SGD with momentum converges faster and more robust about the learning rate than the standard SGD in practice. Finally, we show the Nesterov momentum under the existence of noise has no essential difference with the standard momentum.